論文の概要: Reducing Events to Augment Log-based Anomaly Detection Models: An Empirical Study
- arxiv url: http://arxiv.org/abs/2409.04834v1
- Date: Sat, 7 Sep 2024 14:02:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 20:31:31.250006
- Title: Reducing Events to Augment Log-based Anomaly Detection Models: An Empirical Study
- Title(参考訳): ログベース異常検出モデルの拡張のためのイベントの削減に関する実証的研究
- Authors: Lingzhe Zhang, Tong Jia, Kangjin Wang, Mengxi Jia, Yang Yong, Ying Li,
- Abstract要約: 異常検出の文脈におけるログイベントの自動削減のための効率的な手法であるLogCleanerを提案する。
実験の結果は、異常検出におけるログイベントの70%以上を削減し、モデルの推論速度を約300%高速化するLogCleanerの能力を強調している。
- 参考スコア(独自算出の注目度): 8.110288854047417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As software systems grow increasingly intricate, the precise detection of anomalies have become both essential and challenging. Current log-based anomaly detection methods depend heavily on vast amounts of log data leading to inefficient inference and potential misguidance by noise logs. However, the quantitative effects of log reduction on the effectiveness of anomaly detection remain unexplored. Therefore, we first conduct a comprehensive study on six distinct models spanning three datasets. Through the study, the impact of log quantity and their effectiveness in representing anomalies is qualifies, uncovering three distinctive log event types that differently influence model performance. Drawing from these insights, we propose LogCleaner: an efficient methodology for the automatic reduction of log events in the context of anomaly detection. Serving as middleware between software systems and models, LogCleaner continuously updates and filters anti-events and duplicative-events in the raw generated logs. Experimental outcomes highlight LogCleaner's capability to reduce over 70% of log events in anomaly detection, accelerating the model's inference speed by approximately 300%, and universally improving the performance of models for anomaly detection.
- Abstract(参考訳): ソフトウェアシステムが複雑化するにつれて、異常の正確な検出は必須かつ困難なものになっている。
現在のログに基づく異常検出法は、ノイズログによる非効率な推論と潜在的な誤報につながる大量のログデータに大きく依存している。
しかし、異常検出の有効性に対するログリダクションの定量的効果は未解明のままである。
そこで、まず3つのデータセットにまたがる6つの異なるモデルについて包括的な研究を行う。
この研究を通じて、ログ量の影響と異常表現の有効性が定式化され、モデルの性能に異なる3つの特徴的なログイベントタイプが明らかになった。
これらの知見から,異常検出の文脈におけるログイベントの自動削減のための効率的な手法であるLogCleanerを提案する。
ソフトウェアシステムとモデルの間のミドルウェアとして機能するLogCleanerは、生ログのアンチイベントと重複イベントを継続的に更新し、フィルタする。
実験結果は、異常検出におけるログイベントの70%以上を削減し、モデルの推論速度を約300%加速し、異常検出のためのモデルの性能を普遍的に改善するLogCleanerの能力を強調している。
関連論文リスト
- Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction [1.474723404975345]
手動アノテーションの高コストと使用シナリオの動的な性質は、効果的なログ分析において大きな課題となる。
本研究では,様々なシナリオに対応するために設計されたDualGCN-LogAEと呼ばれる新しいログ特徴抽出モデルを提案する。
また,特徴抽出器に基づく教師なしログ異常検出手法であるLog2graphsを導入する。
論文 参考訳(メタデータ) (2024-09-18T11:35:58Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
本研究では,ビジネスプロセスにおける異常検出のための新しいフレームワークを提案する。
まず、属性グラフとしてオブジェクト中心のイベントログのプロセス依存性を再構築する。
次に、異常事象を検出するために、グラフ畳み込みオートエンコーダアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-02-14T14:17:56Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLADは、システムログの異常を検出するように設計されたグラフベースのログ異常検出フレームワークである。
システムログの異常を検出するために設計されたグラフベースのログ異常検出フレームワークであるGLADを紹介する。
論文 参考訳(メタデータ) (2023-09-12T04:21:30Z) - Impact of Log Parsing on Deep Learning-Based Anomaly Detection [4.0719622481627376]
本研究では,ログ解析精度と異常検出精度との間には強い相関関係がないことを示す。
本研究は,ログ解析結果の識別可能性を示す特性として,既存の理論結果について実験的に検証する。
論文 参考訳(メタデータ) (2023-05-25T09:53:02Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - LogGD:Detecting Anomalies from System Logs by Graph Neural Networks [14.813971618949068]
本稿では,グラフに基づくログ異常検出手法であるLogGDを提案し,この問題に効果的に対処する。
グラフ構造とノードセマンティクスを組み合わせてログベースの異常検出を行うグラフトランスフォーマーニューラルネットワークの強力な機能を利用する。
論文 参考訳(メタデータ) (2022-09-16T11:51:58Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
ログ解析を必要としない新しいログベースの異常検出手法であるNeuralLogを提案する。
実験の結果,提案手法はログメッセージの意味を効果的に理解できることがわかった。
全体として、NeuralLogは4つの公開データセットで0.95以上のF1スコアを獲得し、既存のアプローチを上回っている。
論文 参考訳(メタデータ) (2021-08-04T10:42:13Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
クラウドのような大規模コンピュータシステムにおける異常や障害は、多くのユーザに影響を与える。
システム情報の主要なトラブルシューティングソースとして,ログデータの異常検出のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-23T09:17:05Z) - Detecting Log Anomalies with Multi-Head Attention (LAMA) [2.0684234025249713]
テンプレートアクティビティ(イベント)シーケンスとしてログストリームを処理するマルチヘッドアテンションに基づくシーケンシャルモデルであるlamaを提案する。
次にイベント予測タスクを適用して、異常検出のためのモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-01-07T06:15:59Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
ログ表現を学習するための分類法であるLogsyを提案する。
従来の方法と比較して,F1スコアの平均0.25の改善を示す。
論文 参考訳(メタデータ) (2020-08-21T07:26:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。