論文の概要: Detecting Log Anomalies with Multi-Head Attention (LAMA)
- arxiv url: http://arxiv.org/abs/2101.02392v1
- Date: Thu, 7 Jan 2021 06:15:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 13:27:58.663450
- Title: Detecting Log Anomalies with Multi-Head Attention (LAMA)
- Title(参考訳): マルチヘッドアテンション(LAMA)によるログ異常の検出
- Authors: Yicheng Guo, Yujin Wen, Congwei Jiang, Yixin Lian, Yi Wan
- Abstract要約: テンプレートアクティビティ(イベント)シーケンスとしてログストリームを処理するマルチヘッドアテンションに基づくシーケンシャルモデルであるlamaを提案する。
次にイベント予測タスクを適用して、異常検出のためのモデルをトレーニングする。
- 参考スコア(独自算出の注目度): 2.0684234025249713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is a crucial and challenging subject that has been studied
within diverse research areas. In this work, we explore the task of log anomaly
detection (especially computer system logs and user behavior logs) by analyzing
logs' sequential information. We propose LAMA, a multi-head attention based
sequential model to process log streams as template activity (event) sequences.
A next event prediction task is applied to train the model for anomaly
detection. Extensive empirical studies demonstrate that our new model
outperforms existing log anomaly detection methods including statistical and
deep learning methodologies, which validate the effectiveness of our proposed
method in learning sequence patterns of log data.
- Abstract(参考訳): 異常検出は、様々な研究領域で研究されている重要かつ困難な課題である。
本研究では,ログの逐次情報を解析することにより,ログ異常検出(特にコンピュータシステムログとユーザの行動ログ)の課題を検討する。
テンプレートアクティビティ(イベント)シーケンスとしてログストリームを処理するマルチヘッドアテンションに基づくシーケンシャルモデルであるlamaを提案する。
次にイベント予測タスクを適用し、異常検出のためのモデルをトレーニングする。
大規模実験により,提案手法がログデータのシーケンスパターンを学習する際の有効性を検証するため,統計的および深層学習手法を含む既存のログ異常検出手法よりも優れた結果が得られた。
関連論文リスト
- What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach [12.980238412281471]
ログデータのセマンティック、シーケンシャル、時間的情報をキャプチャするトランスフォーマーに基づく異常検出モデルを提案する。
入力特徴の異なる組み合わせによる一連の実験を行い、異常検出における異なる種類の情報の役割を評価する。
その結果, 事象発生情報は異常を識別する上で重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-30T17:03:13Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
本研究では,ビジネスプロセスにおける異常検出のための新しいフレームワークを提案する。
まず、属性グラフとしてオブジェクト中心のイベントログのプロセス依存性を再構築する。
次に、異常事象を検出するために、グラフ畳み込みオートエンコーダアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-02-14T14:17:56Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - LogAnMeta: Log Anomaly Detection Using Meta Learning [0.755972004983746]
現在の監視されたログ異常検出フレームワークは、トレーニングデータにはほとんど、あるいは見当たらないサンプルを持たない新しいタイプの異常や署名に対して、パフォーマンスが良くない傾向にある。
サンプルの少ないログイベントのシーケンスから異常を検出するメタラーニングに基づくログ異常検出フレームワーク(LogAnMeta)を提案する。
論文 参考訳(メタデータ) (2022-12-21T13:00:02Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - LogGD:Detecting Anomalies from System Logs by Graph Neural Networks [14.813971618949068]
本稿では,グラフに基づくログ異常検出手法であるLogGDを提案し,この問題に効果的に対処する。
グラフ構造とノードセマンティクスを組み合わせてログベースの異常検出を行うグラフトランスフォーマーニューラルネットワークの強力な機能を利用する。
論文 参考訳(メタデータ) (2022-09-16T11:51:58Z) - Feature Selection for Fault Detection and Prediction based on Event Log
Analysis [14.80211278818555]
イベントログは複雑なシステムにおける異常検出と予測に広く利用されている。
ログベースの異常検出と予測のための特徴選択手法を開発し,その有効性と効率を大幅に改善する。
論文 参考訳(メタデータ) (2022-08-19T16:43:37Z) - Deep Learning for Anomaly Detection in Log Data: A Survey [3.508620069426877]
自己学習異常検出技術は、ログデータのパターンをキャプチャし、予期しないログイベントを報告する。
この目的のためのディープラーニングニューラルネットワークが紹介されている。
ディープラーニングにはさまざまなアーキテクチャがあり、生と非構造化のログデータをエンコードするのは簡単ではない。
論文 参考訳(メタデータ) (2022-07-08T10:58:28Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
ログ表現を学習するための分類法であるLogsyを提案する。
従来の方法と比較して,F1スコアの平均0.25の改善を示す。
論文 参考訳(メタデータ) (2020-08-21T07:26:55Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。