論文の概要: Learning with Shared Representations: Statistical Rates and Efficient Algorithms
- arxiv url: http://arxiv.org/abs/2409.04919v2
- Date: Tue, 21 Jan 2025 20:03:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:39.780211
- Title: Learning with Shared Representations: Statistical Rates and Efficient Algorithms
- Title(参考訳): 共有表現による学習:統計率と効率的なアルゴリズム
- Authors: Xiaochun Niu, Lili Su, Jiaming Xu, Pengkun Yang,
- Abstract要約: 潜在共有表現による協調学習により、異種クライアントは、サンプルサイズを減らしながら、パフォーマンスを向上したパーソナライズされたモデルをトレーニングできる。
経験的成功と広範な研究にもかかわらず、統計誤差率の理論的理解は、低次元線型部分空間に制約された共有表現でさえも不完全である。
- 参考スコア(独自算出の注目度): 13.643155483461028
- License:
- Abstract: Collaborative learning through latent shared feature representations enables heterogeneous clients to train personalized models with enhanced performance while reducing sample complexity. Despite its empirical success and extensive research, the theoretical understanding of statistical error rates remains incomplete, even for shared representations constrained to low-dimensional linear subspaces. In this paper, we establish new upper and lower bounds on the error for learning low-dimensional linear representations shared across clients. Our results account for both statistical heterogeneity (including covariate and concept shifts) and heterogeneity in local dataset sizes, a critical aspect often overlooked in previous studies. We further extend our error bounds to more general nonlinear models, including logistic regression and one-hidden-layer ReLU neural networks. More specifically, we design a spectral estimator that leverages independent replicas of local averaging to approximately solve the non-convex least squares problem. We derive a nearly matching minimax lower bound, proving that our estimator achieves the optimal statistical rate when the latent shared linear representation is well-represented across the entire dataset--that is, when no specific direction is disproportionately underrepresented. Our analysis reveals two distinct phases of the optimal rate: in typical cases, the rate matches the standard parameter-counting rate for the representation; however, a statistical penalty arises when the number of clients surpasses a certain threshold or the local dataset sizes fall below a threshold. These findings provide a more precise characterization of when collaboration benefits the overall system or individual clients in transfer learning and private fine-tuning.
- Abstract(参考訳): 潜在共有機能表現による協調学習により、異種クライアントは、サンプルの複雑さを低減しつつ、パフォーマンスを向上させたパーソナライズされたモデルをトレーニングできる。
経験的成功と広範な研究にもかかわらず、統計誤差率の理論的理解は、低次元線型部分空間に制約された共有表現でさえも不完全である。
本稿では,クライアント間で共有される低次元線形表現を学習するための誤りの上下境界を確立する。
この結果は,局所データセットサイズにおける統計的不均一性(共変量や概念シフトを含む)と不均一性の両方を説明できる。
さらに、ロジスティック回帰や1重層ReLUニューラルネットワークなど、より一般的な非線形モデルにもエラー境界を拡張します。
より具体的には、局所平均化の独立レプリカを利用したスペクトル推定器を設計し、非凸最小二乗問題を大まかに解決する。
ほぼ一致したミニマックス下界を導出し、潜在共有線形表現がデータセット全体にわたって適切に表現されている場合、すなわち、特定の方向が不均等に表現されていない場合、推定器が最適な統計率を達成することを証明した。
分析の結果, 典型的な場合, レートは表現の標準パラメータカウント率と一致しているが, クライアント数が一定の閾値を超える場合や, ローカルデータセットサイズがしきい値以下になると, 統計的ペナルティが発生する。
これらの知見は,移動学習や個人ファインチューニングにおいて,共同作業がシステム全体や個々のクライアントにどのようなメリットをもたらすかを,より正確に評価する。
関連論文リスト
- Learning Massive-scale Partial Correlation Networks in Clinical Multi-omics Studies with HP-ACCORD [10.459304300065186]
擬似表現に基づくグラフィカル・モデル・フレームワークを提案する。
これは高次元の仮定の下で様々な指標における推定と選択の整合性を維持する。
最大100万変数のシミュレーションデータを用いて,我々のフレームワークの高性能コンピューティング実装を検証した。
論文 参考訳(メタデータ) (2024-12-16T08:38:02Z) - High-dimensional logistic regression with missing data: Imputation, regularization, and universality [7.167672851569787]
我々は高次元リッジ規則化ロジスティック回帰について検討する。
予測誤差と推定誤差の両方を正確に評価する。
論文 参考訳(メタデータ) (2024-10-01T21:41:21Z) - Generalization error of min-norm interpolators in transfer learning [2.7309692684728617]
最小ノルム補間器は、現代の機械学習アルゴリズムの暗黙の正規化限界として自然に現れる。
多くのアプリケーションでは、トレーニング中に限られた量のテストデータが利用できるが、この設定におけるmin-normの特性は十分に理解されていない。
我々はこれらの特徴を達成するために、新しい異方性局所法を確立した。
論文 参考訳(メタデータ) (2024-06-20T02:23:28Z) - Distributed Personalized Empirical Risk Minimization [19.087524494290676]
本稿では、異種データからの学習を容易にするために、新たなパラダイムであるPersonalized Empirical Risk Minimization(PERM)を提案する。
本稿では,標準モデル平均化をモデルシャッフルに置き換えた分散アルゴリズムを提案し,すべてのデバイスに対してPERM目標を同時に最適化する。
論文 参考訳(メタデータ) (2023-10-26T20:07:33Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - A Nonconvex Framework for Structured Dynamic Covariance Recovery [24.471814126358556]
時間変化のある2次統計量を持つ高次元データに対するフレキシブルで解釈可能なモデルを提案する。
文献によって動機付けられ,因子化とスムーズな時間データの定量化を行う。
私たちのアプローチは,既存のベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-11-11T07:09:44Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
この動作を駆動するトレーニングデータの2つの重要な特性を特定します。
モデルの"記憶"に対する帰納的バイアスが,パラメータ化の超過を損なう可能性を示す。
論文 参考訳(メタデータ) (2020-05-09T01:59:13Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。