PatchAlign:Fair and Accurate Skin Disease Image Classification by Alignment with Clinical Labels
- URL: http://arxiv.org/abs/2409.04975v1
- Date: Sun, 8 Sep 2024 05:00:37 GMT
- Title: PatchAlign:Fair and Accurate Skin Disease Image Classification by Alignment with Clinical Labels
- Authors: Aayushman, Hemanth Gaddey, Vidhi Mittal, Manisha Chawla, Gagan Raj Gupta,
- Abstract summary: We introduce a novel approach, PatchAlign, to enhance skin condition image classification accuracy and fairness.
PatchAlign uses Graph Optimal Transport (GOT) Loss as a regularizer to perform cross-domain alignment.
It consistently improves the fairness of true positive rates across skin tones.
- Score: 0.12233362977312943
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning models have achieved great success in automating skin lesion diagnosis. However, the ethnic disparity in these models' predictions needs to be addressed before deploying them. We introduce a novel approach, PatchAlign, to enhance skin condition image classification accuracy and fairness by aligning with clinical text representations of skin conditions. PatchAlign uses Graph Optimal Transport (GOT) Loss as a regularizer to perform cross-domain alignment. The representations obtained are robust and generalize well across skin tones, even with limited training samples. To reduce the effect of noise and artifacts in clinical dermatology images, we propose a learnable Masked Graph Optimal Transport for cross-domain alignment that further improves fairness metrics. We compare our model to the state-of-the-art FairDisCo on two skin lesion datasets with different skin types: Fitzpatrick17k and Diverse Dermatology Images (DDI). PatchAlign enhances the accuracy of skin condition image classification by 2.8% (in-domain) and 6.2% (out-domain) on Fitzpatrick17k, and 4.2% (in-domain) on DDI compared to FairDisCo. Additionally, it consistently improves the fairness of true positive rates across skin tones. The source code for the implementation is available at the following GitHub repository: https://github.com/aayushmanace/PatchAlign24, enabling easy reproduction and further experimentation.
Related papers
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
Diffusion Model (DM) has become a leading method in generating synthetic medical images, but it suffers from a critical twofold bias.
We propose FairSkin, a novel DM framework that mitigates these biases through a three-level resampling mechanism.
Our approach significantly improves the diversity and quality of generated images, contributing to more equitable skin disease detection in clinical settings.
arXiv Detail & Related papers (2024-10-29T21:37:03Z) - Lesion Elevation Prediction from Skin Images Improves Diagnosis [18.536449533612235]
We use a deep learning model to predict image-level lesion elevation labels from 2D skin lesion images.
We show that these labels improve the classification performance, with AUROC improvements of up to 6.29% and 2.69% for dermoscopic and clinical images, respectively.
arXiv Detail & Related papers (2024-08-05T19:19:29Z) - Enhancing Skin Disease Classification Leveraging Transformer-based Deep Learning Architectures and Explainable AI [2.3149142745203326]
Skin diseases affect over a third of the global population, yet their impact is often underestimated.
Deep learning techniques have shown much promise for various tasks, including dermatological disease identification.
This study uses a skin disease dataset with 31 classes and compares it with all versions of Vision Transformers, Swin Transformers and DivoV2.
arXiv Detail & Related papers (2024-07-20T05:38:00Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
arXiv Detail & Related papers (2024-01-24T07:45:24Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain.
Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks)
This paper proposes a method to mitigate these correlations to improve fairness.
arXiv Detail & Related papers (2023-11-02T19:51:10Z) - FEDD -- Fair, Efficient, and Diverse Diffusion-based Lesion Segmentation
and Malignancy Classification [2.076716889858164]
We introduce a Fair, Efficient, and Diverse Diffusion-based framework for skin lesion segmentation and malignancy classification.
We achieve an improvement in intersection over union of 0.18, 0.13, 0.06, and 0.07 while using only 5%, 10%, 15%, and 20% labeled samples, respectively.
Fedd trained on 10% of Diverse Dermatology Images demonstrates malignancy classification accuracy of 81%, 14% higher compared to the state-of-the-art.
arXiv Detail & Related papers (2023-07-21T15:42:01Z) - FairDisCo: Fairer AI in Dermatology via Disentanglement Contrastive
Learning [11.883809920936619]
We propose FairDisCo, a disentanglement deep learning framework with contrastive learning.
We compare FairDisCo to three fairness methods, namely, resampling, reweighting, and attribute-aware.
We adapt two fairness-based metrics DPM and EOM for our multiple classes and sensitive attributes task, highlighting the skin-type bias in skin lesion classification.
arXiv Detail & Related papers (2022-08-22T01:54:23Z) - Meta Balanced Network for Fair Face Recognition [51.813457201437195]
We systematically and scientifically study bias from both data and algorithm aspects.
We propose a novel meta-learning algorithm, called Meta Balanced Network (MBN), which learns adaptive margins in large margin loss.
Extensive experiments show that MBN successfully mitigates bias and learns more balanced performance for people with different skin tones in face recognition.
arXiv Detail & Related papers (2022-05-13T10:25:44Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - EdgeMixup: Improving Fairness for Skin Disease Classification and
Segmentation [9.750368551427494]
Skin lesions can be an early indicator of a wide range of infectious and other diseases.
The use of deep learning (DL) models to diagnose skin lesions has great potential in assisting clinicians with prescreening patients.
These models often learn biases inherent in training data, which can lead to a performance gap in the diagnosis of people with light and/or dark skin tones.
arXiv Detail & Related papers (2022-02-28T15:33:31Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.