Lesion Elevation Prediction from Skin Images Improves Diagnosis
- URL: http://arxiv.org/abs/2408.02792v1
- Date: Mon, 5 Aug 2024 19:19:29 GMT
- Title: Lesion Elevation Prediction from Skin Images Improves Diagnosis
- Authors: Kumar Abhishek, Ghassan Hamarneh,
- Abstract summary: We use a deep learning model to predict image-level lesion elevation labels from 2D skin lesion images.
We show that these labels improve the classification performance, with AUROC improvements of up to 6.29% and 2.69% for dermoscopic and clinical images, respectively.
- Score: 18.536449533612235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep learning-based computer-aided diagnosis for skin lesion image analysis is approaching dermatologists' performance levels, there are several works showing that incorporating additional features such as shape priors, texture, color constancy, and illumination further improves the lesion diagnosis performance. In this work, we look at another clinically useful feature, skin lesion elevation, and investigate the feasibility of predicting and leveraging skin lesion elevation labels. Specifically, we use a deep learning model to predict image-level lesion elevation labels from 2D skin lesion images. We test the elevation prediction accuracy on the derm7pt dataset, and use the elevation prediction model to estimate elevation labels for images from five other datasets: ISIC 2016, 2017, and 2018 Challenge datasets, MSK, and DermoFit. We evaluate cross-domain generalization by using these estimated elevation labels as auxiliary inputs to diagnosis models, and show that these improve the classification performance, with AUROC improvements of up to 6.29% and 2.69% for dermoscopic and clinical images, respectively. The code is publicly available at https://github.com/sfu-mial/LesionElevation.
Related papers
- PatchAlign:Fair and Accurate Skin Disease Image Classification by Alignment with Clinical Labels [0.12233362977312943]
We introduce a novel approach, PatchAlign, to enhance skin condition image classification accuracy and fairness.
PatchAlign uses Graph Optimal Transport (GOT) Loss as a regularizer to perform cross-domain alignment.
It consistently improves the fairness of true positive rates across skin tones.
arXiv Detail & Related papers (2024-09-08T05:00:37Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Revamping AI Models in Dermatology: Overcoming Critical Challenges for
Enhanced Skin Lesion Diagnosis [8.430482797862926]
We present an All-In-One textbfHierarchical-textbfOut of Distribution-textbfClinical Triage model.
For a clinical image, our model generates three outputs: a hierarchical prediction, an alert for out-of-distribution images, and a recommendation for dermoscopy.
Our versatile model provides valuable decision support for lesion diagnosis and sets a promising precedent for medical AI applications.
arXiv Detail & Related papers (2023-11-02T06:08:49Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Increasing Melanoma Diagnostic Confidence: Forcing the Convolutional
Network to Learn from the Lesion [0.9143713488498512]
We propose a novel technique to improve melanoma recognition by an EfficientNet model.
The model trains the network to detect the lesion and learn features from the detected lesion.
Test results show that the proposed method improved diagnostic accuracy by increasing the mean area under receiver operating characteristic curve (mean AUC) score from 0.9 to 0.922.
arXiv Detail & Related papers (2023-05-16T15:34:12Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Analysis of skin lesion images with deep learning [0.0]
We evaluate the current state of the art in the classification of dermoscopic images.
Various deep neural network architectures pre-trained on the ImageNet data set are adapted to a combined training data set.
The performance and applicability of these models for the detection of eight classes of skin lesions are examined.
arXiv Detail & Related papers (2021-01-11T10:58:36Z) - Lesion Net -- Skin Lesion Segmentation Using Coordinate Convolution and
Deep Residual Units [18.908448254745473]
The accuracy of segmenting melanomas skin lesions is quite a challenging task due to less data for training, irregular shapes, unclear boundaries, and different skin colors.
Our proposed approach helps in improving the accuracy of skin lesion segmentation.
The results show that the proposed model either outperform or at par with the existing skin lesion segmentation methods.
arXiv Detail & Related papers (2020-12-28T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.