Unsupervised Multimodal 3D Medical Image Registration with Multilevel Correlation Balanced Optimization
- URL: http://arxiv.org/abs/2409.05040v1
- Date: Sun, 8 Sep 2024 09:38:59 GMT
- Title: Unsupervised Multimodal 3D Medical Image Registration with Multilevel Correlation Balanced Optimization
- Authors: Jiazheng Wang, Xiang Chen, Yuxi Zhang, Min Liu, Yaonan Wang, Hang Zhang,
- Abstract summary: We propose an unsupervised multimodal medical image registration method based on multilevel correlation balanced optimization.
For preoperative medical images in different modalities, the alignment and stacking of valid information is achieved by the maximum fusion between deformation fields.
- Score: 22.633633605566214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surgical navigation based on multimodal image registration has played a significant role in providing intraoperative guidance to surgeons by showing the relative position of the target area to critical anatomical structures during surgery. However, due to the differences between multimodal images and intraoperative image deformation caused by tissue displacement and removal during the surgery, effective registration of preoperative and intraoperative multimodal images faces significant challenges. To address the multimodal image registration challenges in Learn2Reg 2024, an unsupervised multimodal medical image registration method based on multilevel correlation balanced optimization (MCBO) is designed to solve these problems. First, the features of each modality are extracted based on the modality independent neighborhood descriptor, and the multimodal images is mapped to the feature space. Second, a multilevel pyramidal fusion optimization mechanism is designed to achieve global optimization and local detail complementation of the deformation field through dense correlation analysis and weight-balanced coupled convex optimization for input features at different scales. For preoperative medical images in different modalities, the alignment and stacking of valid information between different modalities is achieved by the maximum fusion between deformation fields. Our method focuses on the ReMIND2Reg task in Learn2Reg 2024, and to verify the generality of the method, we also tested it on the COMULIS3DCLEM task. Based on the results, our method achieved second place in the validation of both two tasks.
Related papers
- Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy [9.060365057476133]
Cervical cancer is one of the leading causes of death in women.
We propose a preliminary spatial alignment algorithm and a weakly supervised multimodal registration network.
arXiv Detail & Related papers (2024-05-21T15:05:51Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging.
We present an un-supervised deep learning registration methodology which can accurately model affine and non-rigid trans-formations.
Our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent rep-resentations.
arXiv Detail & Related papers (2022-03-07T12:54:33Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Unsupervised Multimodal Image Registration with Adaptative Gradient
Guidance [23.461130560414805]
Unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration.
The estimated deformation fields of the existing methods fully rely on the to-be-registered image pair.
We propose a novel multimodal registration framework, which leverages the deformation fields estimated from both.
arXiv Detail & Related papers (2020-11-12T05:47:20Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
Multi-modal imaging sensors are currently involved at different steps of an interventional therapeutic work-flow.
Merging this information relies on a correct spatial alignment of the observed anatomy between the acquired images.
We show that a regional registration approach using voxel patches provides a good structural compromise between the voxel-wise and "global shifts" approaches.
arXiv Detail & Related papers (2020-11-09T11:27:45Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.