Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy
- URL: http://arxiv.org/abs/2405.12850v1
- Date: Tue, 21 May 2024 15:05:51 GMT
- Title: Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy
- Authors: Jjahao Zhang, Yin Gu, Deyu Sun, Yuhua Gao, Ming Gao, Ming Cui, Teng Zhang, He Ma,
- Abstract summary: Cervical cancer is one of the leading causes of death in women.
We propose a preliminary spatial alignment algorithm and a weakly supervised multimodal registration network.
- Score: 9.060365057476133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cervical cancer is one of the leading causes of death in women, and brachytherapy is currently the primary treatment method. However, it is important to precisely define the extent of paracervical tissue invasion to improve cancer diagnosis and treatment options. The fusion of the information characteristics of both computed tomography (CT) and magnetic resonance imaging(MRI) modalities may be useful in achieving a precise outline of the extent of paracervical tissue invasion. Registration is the initial step in information fusion. However, when aligning multimodal images with varying depths, manual alignment is prone to large errors and is time-consuming. Furthermore, the variations in the size of the Region of Interest (ROI) and the shape of multimodal images pose a significant challenge for achieving accurate registration.In this paper, we propose a preliminary spatial alignment algorithm and a weakly supervised multimodal registration network. The spatial position alignment algorithm efficiently utilizes the limited annotation information in the two modal images provided by the doctor to automatically align multimodal images with varying depths. By utilizing aligned multimodal images for weakly supervised registration and incorporating pyramidal features and cost volume to estimate the optical flow, the results indicate that the proposed method outperforms traditional volume rendering alignment methods and registration networks in various evaluation metrics. This demonstrates the effectiveness of our model in multimodal image registration.
Related papers
- Unsupervised Multimodal 3D Medical Image Registration with Multilevel Correlation Balanced Optimization [22.633633605566214]
We propose an unsupervised multimodal medical image registration method based on multilevel correlation balanced optimization.
For preoperative medical images in different modalities, the alignment and stacking of valid information is achieved by the maximum fusion between deformation fields.
arXiv Detail & Related papers (2024-09-08T09:38:59Z) - Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss [0.0]
Long COVID is characterized by persistent symptoms, particularly pulmonary impairment.
Integrating functional data from XeMRI with structural data from CT is crucial for comprehensive analysis and effective treatment strategies.
We propose an end-to-end multimodal deformable image registration method that achieves superior performance for aligning long-COVID lung CT and proton density MRI data.
arXiv Detail & Related papers (2024-06-21T14:19:18Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T16:39:56Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Multimodal Multi-Head Convolutional Attention with Various Kernel Sizes
for Medical Image Super-Resolution [56.622832383316215]
We propose a novel multi-head convolutional attention module to super-resolve CT and MRI scans.
Our attention module uses the convolution operation to perform joint spatial-channel attention on multiple input tensors.
We introduce multiple attention heads, each head having a distinct receptive field size corresponding to a particular reduction rate for the spatial attention.
arXiv Detail & Related papers (2022-04-08T07:56:55Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Unsupervised Multimodal Image Registration with Adaptative Gradient
Guidance [23.461130560414805]
Unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration.
The estimated deformation fields of the existing methods fully rely on the to-be-registered image pair.
We propose a novel multimodal registration framework, which leverages the deformation fields estimated from both.
arXiv Detail & Related papers (2020-11-12T05:47:20Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
Multi-modal imaging sensors are currently involved at different steps of an interventional therapeutic work-flow.
Merging this information relies on a correct spatial alignment of the observed anatomy between the acquired images.
We show that a regional registration approach using voxel patches provides a good structural compromise between the voxel-wise and "global shifts" approaches.
arXiv Detail & Related papers (2020-11-09T11:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.