IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
- URL: http://arxiv.org/abs/2503.24121v2
- Date: Thu, 03 Apr 2025 16:03:23 GMT
- Title: IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
- Authors: Valentin Boussot, Cédric Hémon, Jean-Claude Nunes, Jason Downling, Simon Rouzé, Caroline Lafond, Anaïs Barateau, Jean-Louis Dillenseger,
- Abstract summary: IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration) is a novel similarity metric designed for robust multimodal image registration.<n>It defines a semantic similarity measure based on the comparison of deep features extracted from large-scale pretrained segmentation models.<n>It was evaluated on five challenging 3D registration tasks involving thoracic CT/CBCT and pelvic MR/CT datasets.
- Score: 0.46904601975060667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image registration is fundamental in medical imaging, enabling precise alignment of anatomical structures for diagnosis, treatment planning, image-guided interventions, and longitudinal monitoring. This work introduces IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration), a novel similarity metric designed for robust multimodal image registration. Rather than relying on raw intensities, handcrafted descriptors, or task-specific training, IMPACT defines a semantic similarity measure based on the comparison of deep features extracted from large-scale pretrained segmentation models. By leveraging representations from models such as TotalSegmentator, Segment Anything (SAM), and other foundation networks, IMPACT provides a task-agnostic, training-free solution that generalizes across imaging modalities. These features, originally trained for segmentation, offer strong spatial correspondence and semantic alignment capabilities, making them naturally suited for registration. The method integrates seamlessly into both algorithmic (Elastix) and learning-based (VoxelMorph) frameworks, leveraging the strengths of each. IMPACT was evaluated on five challenging 3D registration tasks involving thoracic CT/CBCT and pelvic MR/CT datasets. Quantitative metrics, including Target Registration Error and Dice Similarity Coefficient, demonstrated consistent improvements in anatomical alignment over baseline methods. Qualitative analyses further highlighted the robustness of the proposed metric in the presence of noise, artifacts, and modality variations. With its versatility, efficiency, and strong performance across diverse tasks, IMPACT offers a powerful solution for advancing multimodal image registration in both clinical and research settings.
Related papers
- Medical Image Registration Meets Vision Foundation Model: Prototype Learning and Contour Awareness [11.671950446844356]
Existing deformable registration methods rely solely on intensity-based similarity metrics, lacking explicit anatomical knowledge.
We propose a novel SAM-assisted registration framework incorporating prototype learning and contour awareness.
Our framework significantly outperforms existing methods across multiple datasets.
arXiv Detail & Related papers (2025-02-17T04:54:47Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.<n>Method achieves state-of-the-art performance on both public and in-house datasets.
arXiv Detail & Related papers (2024-12-10T10:32:09Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy [9.060365057476133]
Cervical cancer is one of the leading causes of death in women.
We propose a preliminary spatial alignment algorithm and a weakly supervised multimodal registration network.
arXiv Detail & Related papers (2024-05-21T15:05:51Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration [22.157402663162877]
We propose a modality-agnostic structural representation learning method to learn discriminative and contrast-invariance deep structural image representations.
Our method is superior to the conventional local structural representation and statistical-based similarity measures in terms of discriminability and accuracy.
arXiv Detail & Related papers (2024-02-29T08:01:31Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Uncertainty-Aware Multi-Parametric Magnetic Resonance Image Information
Fusion for 3D Object Segmentation [12.361668672097753]
We propose an uncertainty-aware multi-parametric MR image feature fusion method to fully exploit the information for enhanced 3D image segmentation.
Our proposed method achieves better segmentation performance when compared to existing models.
arXiv Detail & Related papers (2022-11-16T09:16:52Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Generalizable multi-task, multi-domain deep segmentation of sparse
pediatric imaging datasets via multi-scale contrastive regularization and
multi-joint anatomical priors [0.41998444721319217]
We propose to design a novel multi-task, multi-domain learning framework in which a single segmentation network is optimized over multiple datasets.
We evaluate our contributions for performing bone segmentation using three scarce and pediatric imaging datasets of the ankle, knee, and shoulder joints.
arXiv Detail & Related papers (2022-07-27T12:59:16Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging.
We present an un-supervised deep learning registration methodology which can accurately model affine and non-rigid trans-formations.
Our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent rep-resentations.
arXiv Detail & Related papers (2022-03-07T12:54:33Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D
Multi-Modal Image Alignment of Large-scale Pathological CT Scans [27.180136688977512]
We propose a novel multi-task learning system, JSSR, based on an end-to-end 3D convolutional neural network.
The system is optimized to satisfy the implicit constraints between different tasks in an unsupervised manner.
It consistently outperforms conventional state-of-the-art multi-modal registration methods.
arXiv Detail & Related papers (2020-05-25T16:30:02Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.