論文の概要: DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
- arxiv url: http://arxiv.org/abs/2409.05099v3
- Date: Thu, 12 Sep 2024 03:59:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 11:22:09.154232
- Title: DreamMapping: High-Fidelity Text-to-3D Generation via Variational Distribution Mapping
- Title(参考訳): DreamMapping:変動分布マッピングによる高忠実テキスト・ツー・3D生成
- Authors: Zeyu Cai, Duotun Wang, Yixun Liang, Zhijing Shao, Ying-Cong Chen, Xiaohang Zhan, Zeyu Wang,
- Abstract要約: SDS (Score Distillation Sampling) はテキストから3D生成の一般的な技術として登場し、テキストから2Dのガイダンスからビュー依存情報を蒸留することで3Dコンテンツ作成を可能にする。
我々は、SDSの徹底的な解析を行い、その定式化を洗練し、中心となる設計はレンダリングされた画像の分布をモデル化することである。
本稿では,分散に基づく生成の劣化事例として,画像の描画を考慮し,分散モデリングプロセスの迅速化を図る,変分分布マッピング (VDM) という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 20.7584503748821
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Score Distillation Sampling (SDS) has emerged as a prevalent technique for text-to-3D generation, enabling 3D content creation by distilling view-dependent information from text-to-2D guidance. However, they frequently exhibit shortcomings such as over-saturated color and excess smoothness. In this paper, we conduct a thorough analysis of SDS and refine its formulation, finding that the core design is to model the distribution of rendered images. Following this insight, we introduce a novel strategy called Variational Distribution Mapping (VDM), which expedites the distribution modeling process by regarding the rendered images as instances of degradation from diffusion-based generation. This special design enables the efficient training of variational distribution by skipping the calculations of the Jacobians in the diffusion U-Net. We also introduce timestep-dependent Distribution Coefficient Annealing (DCA) to further improve distilling precision. Leveraging VDM and DCA, we use Gaussian Splatting as the 3D representation and build a text-to-3D generation framework. Extensive experiments and evaluations demonstrate the capability of VDM and DCA to generate high-fidelity and realistic assets with optimization efficiency.
- Abstract(参考訳): SDS (Score Distillation Sampling) はテキストから3D生成の一般的な技術として登場し、テキストから2Dのガイダンスからビュー依存情報を蒸留することで3Dコンテンツ作成を可能にする。
しかし、過飽和色や過度な滑らかさなどの欠点がしばしば現れる。
本稿では、SDSの徹底的な解析を行い、その定式化を洗練し、コア設計はレンダリング画像の分布をモデル化することであることを示す。
この知見に従えば,拡散ベース生成の劣化事例としてレンダリングされた画像について,分散モデリングプロセスの迅速化を図る,変分分布マッピング (VDM) と呼ばれる新しい戦略を導入する。
この特別な設計は、拡散U-ネットにおけるジャコビアンの計算をスキップすることで、変動分布の効率的な訓練を可能にする。
また, 蒸留精度を向上させるため, 時間ステップ依存性の分散係数アニール (DCA) も導入した。
VDMとDCAを活用することで、3D表現としてガウススプラッティングを使用し、テキストから3D生成フレームワークを構築する。
大規模な実験と評価は、最適化効率で高忠実で現実的な資産を生成するためのVDMとDCAの能力を示す。
関連論文リスト
- MVGaussian: High-Fidelity text-to-3D Content Generation with Multi-View Guidance and Surface Densification [13.872254142378772]
本稿では,テキスト・ツー・3Dコンテンツ生成のための統合フレームワークを提案する。
提案手法は3次元モデルの構造を反復的に形成するために多視点誘導を利用する。
また,表面近傍にガウスを配向させる新しい密度化アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-09-10T16:16:34Z) - FlowDreamer: Exploring High Fidelity Text-to-3D Generation via Rectified Flow [17.919092916953183]
本研究では,フロードレーマーという新しいフレームワークを提案し,よりリッチなテキストの詳細とより高速なコンバージェンスで高忠実度な結果を得る。
鍵となる洞察は、修正流れモデルの結合性と可逆性を利用して、対応する雑音を探索することである。
我々は,同じ軌道に沿って3次元モデルを最適化するために,新しい一様マッチング結合(UCM)損失を導入する。
論文 参考訳(メタデータ) (2024-08-09T11:40:20Z) - VividDreamer: Towards High-Fidelity and Efficient Text-to-3D Generation [69.68568248073747]
拡散に基づく3次元生成タスクにおいて, ポーズ依存型連続蒸留サンプリング (PCDS) を提案する。
PCDSは拡散軌道内でポーズ依存整合関数を構築し、最小サンプリングステップで真の勾配を近似することができる。
そこで我々は,まず1ステップのPCDSを用いて3Dオブジェクトの基本構造を作成し,さらに徐々にPCDSのステップを拡大して細かな細部を生成する,粗大な最適化手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:21:52Z) - OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDreamは、テキストプロンプトから効率よくマルチビューで一貫した3D生成のためのカメラ指向条件付きフレームワークである。
本戦略は,2次元テキスト・画像拡散モジュールの事前学習におけるカメラ配向条件付き機能の実装を強調する。
提案手法は,一貫したマルチビュー特性を持つ高品質なNeRFモデルを生成するだけでなく,既存手法よりも最適化速度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-06-14T13:16:18Z) - ExactDreamer: High-Fidelity Text-to-3D Content Creation via Exact Score Matching [10.362259643427526]
現在のアプローチは、しばしば3次元合成のために事前訓練された2次元拡散モデルを適用する。
過剰な平滑化は、3Dモデルの高忠実度生成に重大な制限をもたらす。
LucidDreamer は SDS における Denoising Diffusion Probabilistic Model (DDPM) を Denoising Diffusion Implicit Model (DDIM) に置き換える
論文 参考訳(メタデータ) (2024-05-24T20:19:45Z) - Grounded Compositional and Diverse Text-to-3D with Pretrained Multi-View Diffusion Model [65.58911408026748]
複雑な合成文のプロンプトを正確に追従できる3Dアセットを生成するために,グラウンドド・ドレーマーを提案する。
まず,テキスト・ツー・3Dパイプラインのボトルネックとして,テキスト誘導4視点画像の活用を提唱する。
次に,テキストアラインな4ビュー画像生成を促すための注意再焦点機構を導入する。
論文 参考訳(メタデータ) (2024-04-28T04:05:10Z) - A Quantitative Evaluation of Score Distillation Sampling Based
Text-to-3D [54.78611187426158]
本研究では,SDS手法の故障事例を定量的に分析し,人間の評価によって相互に検証する,より客観的な定量的評価指標を提案する。
計算効率の良い新しいベースラインモデルを設計することで,この解析の有効性を実証する。
論文 参考訳(メタデータ) (2024-02-29T00:54:09Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
本稿では,事前学習した拡散モデルを用いた3次元合成のための新しい学習パラダイムを提案する。
提案手法は,1つの画像に条件付された高忠実かつ光リアルな3Dコンテンツの生成を解放し,プロンプトを行う。
論文 参考訳(メタデータ) (2023-12-11T18:59:58Z) - Learn to Optimize Denoising Scores for 3D Generation: A Unified and
Improved Diffusion Prior on NeRF and 3D Gaussian Splatting [60.393072253444934]
本稿では,3次元生成タスクの拡散先行性向上を目的とした統合フレームワークを提案する。
拡散先行と拡散モデルの訓練手順の相違を同定し、3次元生成の質を著しく損なう。
論文 参考訳(メタデータ) (2023-12-08T03:55:34Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - Efficient Text-Guided 3D-Aware Portrait Generation with Score
Distillation Sampling on Distribution [28.526714129927093]
本研究では,DreamPortraitを提案する。DreamPortraitは,テキスト誘導型3D画像の単一フォワードパスで効率よく作成することを目的としている。
さらに,テキストと3D認識空間の対応をモデルが明示的に知覚できるように,3D対応のゲート・アテンション機構を設計する。
論文 参考訳(メタデータ) (2023-06-03T11:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。