論文の概要: Mamba-Enhanced Text-Audio-Video Alignment Network for Emotion Recognition in Conversations
- arxiv url: http://arxiv.org/abs/2409.05243v1
- Date: Sun, 8 Sep 2024 23:09:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 16:22:22.971274
- Title: Mamba-Enhanced Text-Audio-Video Alignment Network for Emotion Recognition in Conversations
- Title(参考訳): 会話における感情認識のためのマンバ強調テキスト・ビデオアライメントネットワーク
- Authors: Xinran Li, Xiaomao Fan, Qingyang Wu, Xiaojiang Peng, Ye Li,
- Abstract要約: 本稿では,会話における感情認識のための新しいマンバエンハンステキスト・ビデオアライメントネットワーク(MaTAV)を提案する。
MaTAVは、異なるモダリティ間の整合性を確保するためにユニモーダル機能を整列させ、コンテキストのマルチモーダル情報をよりよくキャプチャするために長い入力シーケンスを処理するという利点がある。
- 参考スコア(独自算出の注目度): 15.748798247815298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion Recognition in Conversations (ERCs) is a vital area within multimodal interaction research, dedicated to accurately identifying and classifying the emotions expressed by speakers throughout a conversation. Traditional ERC approaches predominantly rely on unimodal cues\-such as text, audio, or visual data\-leading to limitations in their effectiveness. These methods encounter two significant challenges: 1) Consistency in multimodal information. Before integrating various modalities, it is crucial to ensure that the data from different sources is aligned and coherent. 2) Contextual information capture. Successfully fusing multimodal features requires a keen understanding of the evolving emotional tone, especially in lengthy dialogues where emotions may shift and develop over time. To address these limitations, we propose a novel Mamba-enhanced Text-Audio-Video alignment network (MaTAV) for the ERC task. MaTAV is with the advantages of aligning unimodal features to ensure consistency across different modalities and handling long input sequences to better capture contextual multimodal information. The extensive experiments on the MELD and IEMOCAP datasets demonstrate that MaTAV significantly outperforms existing state-of-the-art methods on the ERC task with a big margin.
- Abstract(参考訳): 会話における感情認識(英語: Emotion Recognition in Conversations、ERC)は、会話を通して話者が表現する感情を正確に識別し分類することを目的とした多モーダル相互作用研究において重要な分野である。
従来のERCのアプローチは、テキスト、オーディオ、視覚データなど、その有効性に制限を課すことに大きく依存している。
これらの手法は2つの大きな課題に直面する。
1)マルチモーダル情報の一貫性。
様々なモダリティを統合する前に、異なるソースからのデータが整列され、一貫性があることを保証することが不可欠である。
2)文脈情報取得。
マルチモーダルな特徴をうまく融合させるには、特に感情が時間とともに変化し発展する可能性のある長い対話において、進化する感情のトーンを鋭く理解する必要がある。
これらの制約に対処するため,ERCタスクのための新しいMamba-enhanced Text-Audio-Videoアライメントネットワーク(MaTAV)を提案する。
MaTAVは、異なるモダリティ間の整合性を確保するためにユニモーダル機能を整列させ、コンテキストのマルチモーダル情報をよりよくキャプチャするために長い入力シーケンスを処理するという利点がある。
MELDとIEMOCAPデータセットに関する広範な実験により、MATAVはERCタスクにおける既存の最先端メソッドを大きなマージンで大幅に上回っていることが示された。
関連論文リスト
- Enriching Multimodal Sentiment Analysis through Textual Emotional Descriptions of Visual-Audio Content [56.62027582702816]
マルチモーダル・センティメント・アナリティクスは、テキスト、音声、視覚データを融合することで人間の感情を解き放つことを目指している。
しかし、音声やビデオの表現の中で微妙な感情的なニュアンスを認識することは、恐ろしい挑戦だ。
テキストの感情記述に基づくプログレッシブ・フュージョン・フレームワークであるDEVAを紹介する。
論文 参考訳(メタデータ) (2024-12-12T11:30:41Z) - WavFusion: Towards wav2vec 2.0 Multimodal Speech Emotion Recognition [2.3367170233149324]
We propose WavFusion, a multimodal speech emotion recognition framework。
WavFusionは、効果的なマルチモーダル融合、モダリティ、差別的表現学習における重要な研究課題に対処する。
本研究は, 精度の高いマルチモーダルSERにおいて, ニュアンスな相互モーダル相互作用を捉え, 識別表現を学習することの重要性を強調した。
論文 参考訳(メタデータ) (2024-12-07T06:43:39Z) - AIMDiT: Modality Augmentation and Interaction via Multimodal Dimension Transformation for Emotion Recognition in Conversations [57.99479708224221]
AIMDiTと呼ばれる新しいフレームワークを提案し、深い特徴のマルチモーダル融合の問題を解決する。
公開ベンチマークデータセットMELDでAIMDiTフレームワークを使用して行った実験では、Acc-7とw-F1メトリクスの2.34%と2.87%の改善が明らかにされた。
論文 参考訳(メタデータ) (2024-04-12T11:31:18Z) - Multimodal Prompt Transformer with Hybrid Contrastive Learning for
Emotion Recognition in Conversation [9.817888267356716]
会話におけるマルチモーダル感情認識(ERC)は2つの問題に直面している。
表現能力の強いモダリティに対して深部感情の手がかり抽出を行った。
特徴フィルタは、表現能力の弱いモダリティのためのマルチモーダルプロンプト情報として設計された。
MPTは、Transformerの各アテンション層にマルチモーダル融合情報を埋め込む。
論文 参考訳(メタデータ) (2023-10-04T13:54:46Z) - Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object
Detection [72.36017150922504]
教師の融合変換器から学生検出器へ学習した文脈知識を伝達するためのマルチモーダルな文脈知識蒸留フレームワーク MMC-Det を提案する。
多様なマルチモーダルマスキング言語モデリングは、従来のマルチモーダルマスキング言語モデリング(MLM)に基づくオブジェクト分散制約により実現される。
論文 参考訳(メタデータ) (2023-08-30T08:33:13Z) - SI-LSTM: Speaker Hybrid Long-short Term Memory and Cross Modal Attention
for Emotion Recognition in Conversation [16.505046191280634]
会話における感情認識(ERC)は、インテリジェントヘルスケア、会話のための人工知能、チャット履歴に対する意見マイニングなど、さまざまなアプリケーションにとって極めて重要である。
ERCの要点は、会話全体を通して、相互モダリティと相互時間相互作用の両方をモデル化することである。
従来の方法では,会話の時系列情報を学習する一方で,会話における各話者の異なる感情状態を追跡する能力が欠如している。
論文 参考訳(メタデータ) (2023-05-04T10:13:15Z) - M2FNet: Multi-modal Fusion Network for Emotion Recognition in
Conversation [1.3864478040954673]
視覚,音声,テキストのモダリティから感情関連特徴を抽出するマルチモーダルフュージョンネットワーク(M2FNet)を提案する。
マルチヘッドアテンションに基づく融合機構を用いて、入力データの感情に富んだ潜在表現を結合する。
提案する特徴抽出器は,音声および視覚データから感情関連特徴を学習するために,適応的マージンに基づく新しい三重項損失関数を用いて訓練される。
論文 参考訳(メタデータ) (2022-06-05T14:18:58Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
本稿では,マルチモーダル融合とマルチタスク学習の両方に適用可能な,自己適応的でパラメータフリーなチャネル交換ネットワーク(CEN)を提案する。
CENは異なるモダリティのワーク間でチャネルを動的に交換する。
濃密な画像予測を応用するために、CENの有効性は4つの異なるシナリオで検証される。
論文 参考訳(メタデータ) (2021-12-04T05:47:54Z) - Multimodal Learning using Optimal Transport for Sarcasm and Humor
Detection [76.62550719834722]
会話ビデオと画像テキストのペアからマルチモーダルサルカズムとユーモアを検出する。
本稿では,モーダル内対応を利用したマルチモーダル学習システム MuLOT を提案する。
3つのベンチマークデータセット上で,マルチモーダルサルカズムとユーモア検出のためのアプローチを検証した。
論文 参考訳(メタデータ) (2021-10-21T07:51:56Z) - MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion
Recognition in Conversation [32.15124603618625]
本研究では,マルチモーダル融合グラフ畳み込みネットワークMMGCNに基づく新しいモデルを提案する。
MMGCNは、マルチモーダル依存関係を効果的に活用できるだけでなく、話者間の依存性や話者内依存性をモデル化するために話者情報を利用することもできる。
提案したモデルを,IEMOCAPとMELDという2つの公開ベンチマークデータセット上で評価し,MMGCNの有効性を実証した。
論文 参考訳(メタデータ) (2021-07-14T15:37:02Z) - Learning Modality Interaction for Temporal Sentence Localization and
Event Captioning in Videos [76.21297023629589]
そこで本稿では,ビデオの各対のモダリティの相補的情報をよりよく活用するために,ペアワイズなモダリティ相互作用を学習するための新しい手法を提案する。
提案手法は,4つの標準ベンチマークデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-28T12:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。