Demonstration of atom interrogation using photonic integrated circuits anodically bonded to ultra-high vacuum envelopes for epoxy-free scalable quantum sensors
- URL: http://arxiv.org/abs/2409.05254v1
- Date: Mon, 9 Sep 2024 00:06:42 GMT
- Title: Demonstration of atom interrogation using photonic integrated circuits anodically bonded to ultra-high vacuum envelopes for epoxy-free scalable quantum sensors
- Authors: Sterling E. McBride, Cale M. Gentry, Christopher Holland, Colby Bellew, Kaitlin R. Moore, Alan Braun,
- Abstract summary: In a traditional quantum sensor assembly, free-space optics are subject to pointing inaccuracies and temperature-dependent misalignment.
In this paper, we describe the hermetic integration of a PIC with a vacuum envelope via anodic bonding.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable integration of photonic integrated circuits (PICs) into quantum sensors has the potential to drastically reduce sensor size, ease manufacturing scalability, and improve performance in applications where the sensor is subject to high accelerations, vibrations, and temperature changes. In a traditional quantum sensor assembly, free-space optics are subject to pointing inaccuracies and temperature-dependent misalignment. Moreover, the use of epoxy or sealants for affixing either free-space optics or PICs within a sensor vacuum envelope leads to sensor vacuum degradation and is difficult to scale. In this paper, we describe the hermetic integration of a PIC with a vacuum envelope via anodic bonding. We demonstrate utility of this assembly with two proof-of-concept atom-interrogation experiments: (1) spectroscopy of a cold-atom sample using a grating-emitted probe; (2) spectroscopy of alkali atoms using an evanescent field from an exposed ridge waveguide. This work shows a key process step on a path to quantum sensor manufacturing scalability
Related papers
- Enhanced quantum magnetometry with a laser-written integrated photonic diamond chip [0.0]
In this paper, we demonstrate enhanced quantum magnetometry via a high-quality buried laser-written waveguide in diamond.
We show that the waveguide-coupled nitrogen-vacancy centers exhibit comparable spin coherence properties as that of nitrogen-vacancy centers in pristine diamond.
arXiv Detail & Related papers (2025-02-04T16:53:22Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum rotation sensor with real-time readout based on an atom-cavity
system [0.0]
We propose to combine the effective gauge phase of rotated neutral atoms and the superradiant phase transition to build a highly sensitive and fast quantum rotation sensor.
The atoms in a well-controlled array of Bose-Einstein condensates are coupled to a single light mode of an optical cavity.
The photon emission from the cavity indicates changes in the rotation frequency in real time, which is crucial for inertial navigation.
arXiv Detail & Related papers (2023-03-23T17:42:05Z) - Mitigating quantum decoherence in force sensors by internal squeezing [0.0]
We present evidence that quantum decoherence in high-precision laser interferometric force sensors can be mitigated by a quantum squeeze operation inside the sensor's cavity.
Our results pave the way for quantum improvements in scenarios where high decoherence previously precluded the use of squeezed light.
arXiv Detail & Related papers (2023-03-17T13:59:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Hybrid microwave-optical scanning probe for addressing solid-state spins
in nanophotonic cavities [0.0]
In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit.
The optical portion 46% achieves one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss.
The entire probe can be scanned across a large number of devices inside a $3$He cryostat without free-space optical access.
arXiv Detail & Related papers (2020-12-11T01:59:53Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.