Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
- URL: http://arxiv.org/abs/2409.05282v1
- Date: Mon, 9 Sep 2024 02:22:52 GMT
- Title: Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
- Authors: Tianyu Xie, Musu Yuan, Minghua Deng, Cheng Zhang,
- Abstract summary: Subsplit Bayesian networks (SBNs) provide a powerful probabilistic graphical model for tree probability estimation.
The expectation (EM) method currently used for learning SBN parameters does not scale up to large data sets.
We introduce several computationally efficient methods for training SBNs and show that variance reduction could be the key for better performance.
- Score: 11.417249588622926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probability estimation of tree topologies is one of the fundamental tasks in phylogenetic inference. The recently proposed subsplit Bayesian networks (SBNs) provide a powerful probabilistic graphical model for tree topology probability estimation by properly leveraging the hierarchical structure of phylogenetic trees. However, the expectation maximization (EM) method currently used for learning SBN parameters does not scale up to large data sets. In this paper, we introduce several computationally efficient methods for training SBNs and show that variance reduction could be the key for better performance. Furthermore, we also introduce the variance reduction technique to improve the optimization of SBN parameters for variational Bayesian phylogenetic inference (VBPI). Extensive synthetic and real data experiments demonstrate that our methods outperform previous baseline methods on the tasks of tree topology probability estimation as well as Bayesian phylogenetic inference using SBNs.
Related papers
- Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
We propose a Deep Tree-based Retriever (DTR) for efficient recommendation.
DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level.
To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function.
arXiv Detail & Related papers (2024-08-21T05:09:53Z) - Variational Bayesian Phylogenetic Inference with Semi-implicit Branch Length Distributions [6.553961278427792]
We propose a more flexible family of branch length variational posteriors based on semi-implicit hierarchical distributions using graph neural networks.
We show that this construction emits straightforward permutation equivariant distributions, and therefore can handle the non-Euclidean branch length space across different tree topologies with ease.
arXiv Detail & Related papers (2024-08-09T13:29:08Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Pseudo-Likelihood Inference [16.934708242852558]
Pseudo-Likelihood Inference (PLI) is a new method that brings neural approximation into ABC, making it competitive on challenging Bayesian system identification tasks.
PLI allows for optimizing neural posteriors via gradient descent, does not rely on summary statistics, and enables multiple observations as input.
The effectiveness of PLI is evaluated on four classical SBI benchmark tasks and on a highly dynamic physical system.
arXiv Detail & Related papers (2023-11-28T10:17:52Z) - ARTree: A Deep Autoregressive Model for Phylogenetic Inference [6.935130578959931]
We propose a deep autoregressive model for phylogenetic inference based on graph neural networks (GNNs)
We demonstrate the effectiveness and efficiency of our method on a benchmark of challenging real data tree topology density estimation and variational phylogenetic inference problems.
arXiv Detail & Related papers (2023-10-14T10:26:03Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality
Based on Decision Trees as Data Observation Processes [1.2774526936067927]
This paper uses trees to represent data observation processes behind given data.
We derive the statistically optimal prediction, which is robust against overfitting.
We solve this by a Markov chain Monte Carlo method, whose step size is adaptively tuned according to a posterior distribution for the trees.
arXiv Detail & Related papers (2023-06-12T12:14:57Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
We revisit various ensembles of randomized trees to investigate their behavior in the perspective of prediction uncertainty estimation.
We propose a new way of constructing an ensemble of randomized trees, referred to as BwO forest, where bagging with oversampling is employed to construct bootstrapped samples.
Experimental results demonstrate the validity and good performance of BwO forest over existing tree-based models in various circumstances.
arXiv Detail & Related papers (2022-02-22T04:50:37Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
We show that deep ensembles provide an effective mechanism for approximate Bayesian marginalization.
We also propose a related approach that further improves the predictive distribution by marginalizing within basins of attraction.
arXiv Detail & Related papers (2020-02-20T15:13:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.