論文の概要: FIF-UNet: An Efficient UNet Using Feature Interaction and Fusion for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2409.05324v1
- Date: Mon, 9 Sep 2024 04:34:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:50:59.589306
- Title: FIF-UNet: An Efficient UNet Using Feature Interaction and Fusion for Medical Image Segmentation
- Title(参考訳): FIF-UNet: 医用画像分割のための特徴相互作用と融合を用いた効率的なUNet
- Authors: Xiaolin Gou, Chuanlin Liao, Jizhe Zhou, Fengshuo Ye, Yi Lin,
- Abstract要約: FIF-UNetと呼ばれる新しいU字型モデルが3つのプラグ・アンド・プレイモジュールを含む上記の問題に対処するために提案されている。
SynapseとACDCデータセットの実験は、提案されたFIF-UNetが既存の最先端の手法より優れていることを示した。
- 参考スコア(独自算出の注目度): 5.510679875888542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, pre-trained encoders are widely used in medical image segmentation because of their ability to capture complex feature representations. However, the existing models fail to effectively utilize the rich features obtained by the pre-trained encoder, resulting in suboptimal segmentation results. In this work, a novel U-shaped model, called FIF-UNet, is proposed to address the above issue, including three plug-and-play modules. A channel spatial interaction module (CSI) is proposed to obtain informative features by establishing the interaction between encoder stages and corresponding decoder stages. A cascaded conv-SE module (CoSE) is designed to enhance the representation of critical features by adaptively assigning importance weights on different feature channels. A multi-level fusion module (MLF) is proposed to fuse the multi-scale features from the decoder stages, ensuring accurate and robust final segmentation. Comprehensive experiments on the Synapse and ACDC datasets demonstrate that the proposed FIF-UNet outperforms existing state-of-the-art methods, which achieves the highest average DICE of 86.05% and 92.58%, respectively.
- Abstract(参考訳): 今日では、複雑な特徴表現をキャプチャできるため、医療画像のセグメンテーションにおいて、事前訓練されたエンコーダが広く使われている。
しかし、既存のモデルは、事前訓練されたエンコーダによって得られたリッチな特徴を効果的に活用することができず、その結果、最適部分分割結果が得られた。
本研究では、FIF-UNetと呼ばれる新しいU字型モデルを提案し、3つのプラグ・アンド・プレイモジュールを含む上記の問題に対処する。
チャネル空間相互作用モジュール (CSI) を提案し, エンコーダステージと対応するデコーダステージの相互作用を確立することにより, 情報的特徴を得る。
カジュアルなconv-SEモジュール(CoSE)は、異なる特徴チャネルに重みを適応的に割り当てることで、重要な特徴の表現を強化するように設計されている。
マルチレベル融合モジュール(MLF)は、デコーダステージからマルチスケール機能を融合させ、正確で堅牢な最終セグメンテーションを保証する。
SynapseデータセットとACDCデータセットの総合的な実験により、提案されたFIF-UNetは、それぞれ86.05%と92.58%の平均的なDICEを達成する既存の最先端手法よりも優れていることが示された。
関連論文リスト
- Few-Shot Medical Image Segmentation with Large Kernel Attention [5.630842216128902]
本稿では,包括的特徴表現能力を持つ数ショットの医用セグメンテーションモデルを提案する。
本モデルは,2経路特徴抽出器,アテンションモジュール,適応型プロトタイプ予測モジュール,マルチスケール予測融合モジュールの4つの重要なモジュールから構成される。
その結果,本手法が最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-07-27T02:28:30Z) - Local-to-Global Cross-Modal Attention-Aware Fusion for HSI-X Semantic Segmentation [19.461033552684576]
HSI-X分類のためのローカル・グローバル・クロスモーダル・アテンション・アウェア・フュージョン(LoGoCAF)フレームワークを提案する。
LoGoCAFは、HSIとXのモダリティから情報を学ぶために、ピクセルからピクセルまでのセマンティックセマンティックセマンティックセマンティクスアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-06-25T16:12:20Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
本論文は、任意のモーダリティ・サリエント物体検出(AM SOD)の課題について述べる。
任意のモダリティ、例えばRGBイメージ、RGB-Dイメージ、RGB-D-Tイメージから有能なオブジェクトを検出することを目的としている。
AM SODの2つの基本的な課題を解明するために,新しいモード適応トランス (MAT) を提案する。
論文 参考訳(メタデータ) (2024-05-06T11:02:02Z) - CFPFormer: Feature-pyramid like Transformer Decoder for Segmentation and Detection [1.837431956557716]
特徴ピラミッドは、医療画像のセグメンテーションやオブジェクト検出といったタスクのために、畳み込みニューラルネットワーク(CNN)やトランスフォーマーで広く採用されている。
本稿では,特徴ピラミッドと変圧器を統合したデコーダブロックを提案する。
本モデルでは,既存手法と比較して,小型物体の検出性能が向上する。
論文 参考訳(メタデータ) (2024-04-23T18:46:07Z) - MOSformer: Momentum encoder-based inter-slice fusion transformer for
medical image segmentation [15.94370954641629]
2.5Dベースのセグメンテーションモデルは、しばしば各スライスを等しく扱い、スライス間の情報を効果的に学習し活用することができない。
この問題を解決するために,新しいMomentumエンコーダを用いたスライス間核融合トランス (MOSformer) を提案する。
MOSformerは3つのベンチマークデータセット(Synapse、ACDC、AMOS)で評価され、それぞれ85.63%、92.19%、85.43%の新たな最先端技術を確立する。
論文 参考訳(メタデータ) (2024-01-22T11:25:59Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
MLF-DETと呼ばれる,高性能なクロスモーダル3DオブジェクトDrectionのための,新規かつ効果的なマルチレベルフュージョンネットワークを提案する。
特徴レベルの融合では、マルチスケールのボクセル特徴と画像の特徴を密集したマルチスケールのボクセル画像融合(MVI)モジュールを提示する。
本稿では,画像のセマンティクスを利用して検出候補の信頼度を補正するFCR(Feature-cued Confidence Rectification)モジュールを提案する。
論文 参考訳(メタデータ) (2023-07-18T11:26:02Z) - Enhancing Medical Image Segmentation with TransCeption: A Multi-Scale
Feature Fusion Approach [3.9548535445908928]
CNNベースの手法は、その有望な性能と堅牢性のために、医用画像セグメンテーションの基盤となっている。
グローバルな文脈相関をモデル化するために受信フィールドを拡大するため,トランスフォーマーベースのアプローチが普及している。
本稿では,トランスセグメンテーション(TransCeption for Medical Image segmentation)を提案する。
論文 参考訳(メタデータ) (2023-01-25T22:09:07Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
本稿では,CDDFuse(Relationed-Driven Feature Decomposition Fusion)ネットワークを提案する。
近赤外可視画像融合や医用画像融合など,複数の融合タスクにおいてCDDFuseが有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-11-26T02:40:28Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
本稿では,映像コンテンツの動的性質を調査するための統合された行動認識フレームワークを提案する。
まず、局所的な手がかりを抽出する際に、動的スケールの時空間カーネルを生成し、多様な事象を適応的に適合させる。
第2に、これらのキューを正確にグローバルなビデオ表現に集約するために、トランスフォーマーによって選択されたいくつかの前景オブジェクト間のインタラクションのみをマイニングすることを提案する。
論文 参考訳(メタデータ) (2021-07-22T15:57:18Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
自律運転やロボティクスなど,多くのアプリケーションを対象とした3次元セマンティックセマンティックセグメンテーションのためのマルチセンサフュージョンについて検討する。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
本稿では,2つのモードから特徴を分離して抽出する2ストリームネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
ゼロショットオブジェクトセグメンテーションのためのモーション・アテンタティブ・トランジション・ネットワーク(MATNet)を提案する。
モーション・アテンティブ・トランジション (MAT) と呼ばれる非対称のアテンションブロックは、2ストリームエンコーダ内に設計されている。
このように、エンコーダは深く相互に作用し、物体の動きと外観の間の密な階層的な相互作用を可能にする。
論文 参考訳(メタデータ) (2020-03-09T16:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。