論文の概要: Decoupling Contact for Fine-Grained Motion Style Transfer
- arxiv url: http://arxiv.org/abs/2409.05387v1
- Date: Mon, 9 Sep 2024 07:33:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:30:45.229338
- Title: Decoupling Contact for Fine-Grained Motion Style Transfer
- Title(参考訳): ファイングラインドモーションスタイル転送のためのデカップリングコンタクト
- Authors: Xiangjun Tang, Linjun Wu, He Wang, Yiqian Wu, Bo Hu, Songnan Li, Xu Gong, Yuchen Liao, Qilong Kou, Xiaogang Jin,
- Abstract要約: モーションスタイルの転送は、その内容を維持しながら動きのスタイルを変え、コンピュータアニメーションやゲームに有用である。
動作スタイルの伝達において、接触を分離して制御し、きめ細かい制御を行う方法は不明である。
本研究では,触覚の自然な動きと時空間変動を両立させながら,接触のきめ細かい制御を行う新しいスタイル伝達法を提案する。
- 参考スコア(独自算出の注目度): 21.61658765014968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion style transfer changes the style of a motion while retaining its content and is useful in computer animations and games. Contact is an essential component of motion style transfer that should be controlled explicitly in order to express the style vividly while enhancing motion naturalness and quality. However, it is unknown how to decouple and control contact to achieve fine-grained control in motion style transfer. In this paper, we present a novel style transfer method for fine-grained control over contacts while achieving both motion naturalness and spatial-temporal variations of style. Based on our empirical evidence, we propose controlling contact indirectly through the hip velocity, which can be further decomposed into the trajectory and contact timing, respectively. To this end, we propose a new model that explicitly models the correlations between motions and trajectory/contact timing/style, allowing us to decouple and control each separately. Our approach is built around a motion manifold, where hip controls can be easily integrated into a Transformer-based decoder. It is versatile in that it can generate motions directly as well as be used as post-processing for existing methods to improve quality and contact controllability. In addition, we propose a new metric that measures a correlation pattern of motions based on our empirical evidence, aligning well with human perception in terms of motion naturalness. Based on extensive evaluation, our method outperforms existing methods in terms of style expressivity and motion quality.
- Abstract(参考訳): モーションスタイルの転送は、その内容を維持しながら動きのスタイルを変え、コンピュータアニメーションやゲームに有用である。
接触は動きの自然さと質を高めつつ、鮮明に表現するために明示的に制御されるべき動きスタイル伝達の不可欠な要素である。
しかし、動作スタイルの伝達において微粒な制御を実現するために接触を分離して制御する方法は不明である。
本稿では,動作の自然さと時空間の変動を両立させながら,接触のきめ細かい制御を行う新しいスタイル転送手法を提案する。
経験的証拠に基づき, 股関節の速度を介して間接的に接触を制御することを提案し, それぞれ軌跡と接触タイミングに分解することができる。
そこで本研究では,動きと軌道/接触タイミング/スタイルの相関関係を明示的にモデル化し,それぞれを分離制御する新しいモデルを提案する。
我々のアプローチは運動多様体を中心に構築されており、腰の制御をトランスフォーマーベースのデコーダに簡単に組み込むことができる。
動作を直接生成できるだけでなく、既存の方法の事後処理として使用することで、品質と接触制御性を向上させることができる。
また,我々の経験的証拠に基づいて動きの相関パターンを計測し,動きの自然性の観点からの人間の知覚とよく一致させる新しい指標を提案する。
提案手法は,広範に評価され,スタイルの表現性や動きの質の観点から,既存の手法よりも優れていた。
関連論文リスト
- Real-time Diverse Motion In-betweening with Space-time Control [4.910937238451485]
本研究では,キネマティックキャラクタのための多種多様な相互動作を生成するためのデータ駆動型フレームワークを提案する。
本手法は,移動動作と非構造動作の両方を合成し,リッチで汎用的で高品質なアニメーション生成を可能にする。
論文 参考訳(メタデータ) (2024-09-30T22:45:53Z) - Monkey See, Monkey Do: Harnessing Self-attention in Motion Diffusion for Zero-shot Motion Transfer [55.109778609058154]
既存の拡散に基づく運動編集法は、事前訓練されたモデルの重みに埋め込まれた前者の深いポテンシャルを見落としている。
動きパターンのキャプチャーと表現における注目要素の役割と相互作用を明らかにする。
我々はこれらの要素を統合して、従者のニュアンス特性を維持しつつ、従者へのリーダ動作の転送を行い、結果としてゼロショット動作の転送を実現した。
論文 参考訳(メタデータ) (2024-06-10T17:47:14Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
ワンショットのインスタンス誘導モーションカスタマイズ手法であるMotionCrafterを紹介する。
MotionCrafterは、基準運動をベースモデルの時間成分に注入する並列時空間アーキテクチャを採用している。
トレーニング中、凍結ベースモデルは外見の正規化を提供し、運動から効果的に外見を分離する。
論文 参考訳(メタデータ) (2023-12-08T16:31:04Z) - RSMT: Real-time Stylized Motion Transition for Characters [15.856276818061891]
実時間ストライズされた動き遷移法(RSMT)を提案する。
本手法は, 一般運動多様体モデルとスタイル運動サンプリング器の2つの重要な独立成分から構成される。
提案手法は, 高速, 高品質, 汎用性, 制御可能であることを証明した。
論文 参考訳(メタデータ) (2023-06-21T01:50:04Z) - CALM: Conditional Adversarial Latent Models for Directable Virtual
Characters [71.66218592749448]
本研究では,ユーザが制御する対話型仮想キャラクタに対して,多種多様かつ指示可能な振る舞いを生成するための条件付き適応潜在モデル(CALM)を提案する。
模倣学習を用いて、CALMは人間の動きの複雑さを捉える動きの表現を学び、キャラクターの動きを直接制御できる。
論文 参考訳(メタデータ) (2023-05-02T09:01:44Z) - PACE: Data-Driven Virtual Agent Interaction in Dense and Cluttered
Environments [69.03289331433874]
PACEは,高密度で散らばった3Dシーン全体と対話し,移動するために,モーションキャプチャーされた仮想エージェントを改良する新しい手法である。
本手法では,環境中の障害物や物体に適応するために,仮想エージェントの動作シーケンスを必要に応じて変更する。
提案手法を先行動作生成技術と比較し,本手法の利点を知覚的研究と身体的妥当性の指標と比較した。
論文 参考訳(メタデータ) (2023-03-24T19:49:08Z) - Human MotionFormer: Transferring Human Motions with Vision Transformers [73.48118882676276]
人間の動き伝達は、運動合成のためにターゲットの動的人物からソースの静的人物に動きを伝達することを目的としている。
本稿では,世界的および地域的認識を活用して,大規模かつ微妙な動きマッチングを捉える階層型ViTフレームワークであるHuman MotionFormerを提案する。
我々のHuman MotionFormerは、定性的かつ定量的に新しい最先端のパフォーマンスをセットしている。
論文 参考訳(メタデータ) (2023-02-22T11:42:44Z) - Online Motion Style Transfer for Interactive Character Control [5.6151459129070505]
本稿では,ユーザ制御下で異なるスタイルの動作を生成し,リアルタイムに動作スタイルを伝達するエンド・ツー・エンドニューラルネットワークを提案する。
本手法は手作りのフェーズ機能の使用を排除し,ゲームシステムに容易にトレーニングし,直接デプロイすることができる。
論文 参考訳(メタデータ) (2022-03-30T15:23:37Z) - Style-ERD: Responsive and Coherent Online Motion Style Transfer [13.15016322155052]
スタイル転送はキャラクターアニメーションを豊かにする一般的な方法である。
動きをオンラインでスタイル化するための新しいスタイル転送モデルであるStyle-ERDを提案する。
本手法は,動作を複数のターゲットスタイルに統一したモデルでスタイリングする。
論文 参考訳(メタデータ) (2022-03-04T21:12:09Z) - Motion Puzzle: Arbitrary Motion Style Transfer by Body Part [6.206196935093063]
モーション・パズル(Motion Puzzle)は、いくつかの重要な点において最先端のモーション・スタイル・トランスファー・ネットワークである。
本フレームワークは,異なる身体部位に対する複数のスタイル動作からスタイル特徴を抽出し,対象身体部位に局所的に伝達する。
フラッピングやスタッガーのようなダイナミックな動きによって表現されるスタイルを、以前の作品よりもはるかに良く捉えることができる。
論文 参考訳(メタデータ) (2022-02-10T19:56:46Z) - Contact-Aware Retargeting of Skinned Motion [49.71236739408685]
本稿では,自己接触を保存し,相互接続を防止する動作推定手法を提案する。
入力運動における自己接触と接地を同定し、出力骨格に適用するための動作を最適化する。
実験では,従来の手法を定量的に上回り,近年の成果よりも高い品質で再ターゲットされた動きを評価できるユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-09-15T17:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。