Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
- URL: http://arxiv.org/abs/2409.05459v1
- Date: Mon, 9 Sep 2024 09:39:47 GMT
- Title: Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
- Authors: Melanie F. Pradier, Javier González,
- Abstract summary: We propose a matching method to estimate treatment effects that takes into account the intrinsic data geometry induced by existing causal mechanisms.
We provide theoretical insights and empirical results in synthetic and real-world scenarios, demonstrating that GeoMatching yields more effective treatment effect estimators.
- Score: 6.4527669089403155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matching is a popular approach in causal inference to estimate treatment effects by pairing treated and control units that are most similar in terms of their covariate information. However, classic matching methods completely ignore the geometry of the data manifold, which is crucial to define a meaningful distance for matching, and struggle when covariates are noisy and high-dimensional. In this work, we propose GeoMatching, a matching method to estimate treatment effects that takes into account the intrinsic data geometry induced by existing causal mechanisms among the confounding variables. First, we learn a low-dimensional, latent Riemannian manifold that accounts for uncertainty and geometry of the original input data. Second, we estimate treatment effects via matching in the latent space based on the learned latent Riemannian metric. We provide theoretical insights and empirical results in synthetic and real-world scenarios, demonstrating that GeoMatching yields more effective treatment effect estimators, even as we increase input dimensionality, in the presence of outliers, or in semi-supervised scenarios.
Related papers
- Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging [3.8623569699070353]
Trajectory inference deals with the challenge of reconstructing continuous processes from such observations.
We propose methods for B-spline approximation of point clouds through consecutive averaging that is instrinsic to the Wasserstein space.
We rigorously evaluate our method by providing convergence guarantees and testing it on simulated cell data.
arXiv Detail & Related papers (2024-05-30T04:19:20Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - A Semiparametric Instrumented Difference-in-Differences Approach to
Policy Learning [2.1989182578668243]
We propose a general instrumented difference-in-differences (DiD) approach for learning the optimal treatment policy.
Specifically, we establish identification results using a binary instrumental variable (IV) when the parallel trends assumption fails to hold.
We also construct a Wald estimator, novel inverse probability estimators, and a class of semi efficient and multiply robust estimators.
arXiv Detail & Related papers (2023-10-14T09:38:32Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Adaptive Surface Normal Constraint for Depth Estimation [102.7466374038784]
We introduce a simple yet effective method, named Adaptive Surface Normal (ASN) constraint, to correlate the depth estimation with geometric consistency.
Our method can faithfully reconstruct the 3D geometry and is robust to local shape variations, such as boundaries, sharp corners and noises.
arXiv Detail & Related papers (2021-03-29T10:36:25Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Matching in Selective and Balanced Representation Space for Treatment
Effects Estimation [10.913802831701082]
We propose a feature selection representation matching (FSRM) method based on deep representation learning and matching.
We evaluate the performance of our FSRM method on three datasets, and the results demonstrate superiority over the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-15T02:07:34Z) - A Coupled Manifold Optimization Framework to Jointly Model the
Functional Connectomics and Behavioral Data Spaces [5.382679710017696]
We propose a coupled manifold optimization framework which projects fMRI data onto a low dimensional matrix manifold common to the cohort.
The patient specific loadings simultaneously map onto a behavioral measure of interest via a second, non-linear, manifold.
We validate our framework on resting state fMRI from fifty-eight patients with Autism Spectrum Disorder.
arXiv Detail & Related papers (2020-07-03T20:12:51Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
We propose an extension to the framework of variational auto-encoders, where the Euclidean metric is a proxy for the similarity between data points.
We replace the compact prior typically used in variational auto-encoders with a recently presented, more expressive hierarchical one.
We evaluate our method on a range of data-sets, including a video-tracking benchmark.
arXiv Detail & Related papers (2020-02-12T09:54:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.