論文の概要: Proto-OOD: Enhancing OOD Object Detection with Prototype Feature Similarity
- arxiv url: http://arxiv.org/abs/2409.05466v2
- Date: Tue, 28 Jan 2025 05:29:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:39:37.413744
- Title: Proto-OOD: Enhancing OOD Object Detection with Prototype Feature Similarity
- Title(参考訳): Proto-OOD:OODオブジェクト検出をプロトタイプの特徴的類似性で強化する
- Authors: Junkun Chen, Jilin Mei, Liang Chen, Fangzhou Zhao, Yan Xing, Yu Hu,
- Abstract要約: 限られたカテゴリサンプルでトレーニングされたニューラルネットワークは、しばしばOOD(out-of-distribution)オブジェクトを誤予測する。
我々は、同じカテゴリの特徴が特徴空間においてより密集しているのに対して、異なるカテゴリの特徴はより分散しているのを観察する。
我々は新しいOOD検出ネットワーク構造(Proto-OOD)を導入する。
Proto-OODは、コントラスト損失を用いたカテゴリプロトタイプの表現性を向上し、入力特徴とカテゴリプロトタイプの類似性を評価することでOODデータを検出する。
- 参考スコア(独自算出の注目度): 15.305171289133463
- License:
- Abstract: Neural networks that are trained on limited category samples often mispredict out-of-distribution (OOD) objects. We observe that features of the same category are more tightly clustered in feature space, while those of different categories are more dispersed. Based on this, we propose using prototype similarity for OOD detection. Drawing on widely used prototype features in few-shot learning, we introduce a novel OOD detection network structure (Proto-OOD). Proto-OOD enhances the representativeness of category prototypes using contrastive loss and detects OOD data by evaluating the similarity between input features and category prototypes. During training, Proto-OOD generates OOD samples for training the similarity module with a negative embedding generator. When Pascal VOC are used as the in-distribution dataset and MS-COCO as the OOD dataset, Proto-OOD significantly reduces the FPR (false positive rate). Moreover, considering the limitations of existing evaluation metrics, we propose a more reasonable evaluation protocol. The code will be released.
- Abstract(参考訳): 限られたカテゴリサンプルでトレーニングされたニューラルネットワークは、しばしばOOD(out-of-distribution)オブジェクトを誤予測する。
我々は、同じカテゴリの特徴が特徴空間においてより密集しているのに対して、異なるカテゴリの特徴はより分散しているのを観察する。
そこで本研究では,OOD検出のためのプロトタイプ類似性を提案する。
そこで本研究では,OOD検出ネットワーク構造(Proto-OOD)について紹介する。
Proto-OODは、コントラスト損失を用いたカテゴリプロトタイプの表現性を向上し、入力特徴とカテゴリプロトタイプの類似性を評価することでOODデータを検出する。
トレーニング中、Proto-OODは、負の埋め込みジェネレータで類似モジュールをトレーニングするためのOODサンプルを生成する。
ディストリビューションデータセットとしてPascal VOC、OODデータセットとしてMS-COCOを使用する場合、Proto-OODはFPR(偽陽性率)を大幅に削減する。
さらに,既存の評価基準の限界を考慮し,より合理的な評価プロトコルを提案する。
コードはリリースされます。
関連論文リスト
- Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
既存のアウト・オブ・ディストリビューション(OOD)検出ベンチマークは、サンプルを新しいラベルでOODデータとして分類する。
いくつかの限界OODサンプルは、実際には分布内(ID)サンプルに密接なセマンティック内容を持ち、OODサンプルをソリテスパラドックス(英語版)と判定する。
この問題に対処するため,Incremental Shift OOD (IS-OOD) というベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-14T09:27:56Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distriion (OOD) は未知のクラスからサンプルを識別することを目的としている。
我々は,大規模なコーパスデータベースから大量の負のラベルを抽出する,NegLabelと呼ばれる新しいポストホックOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T09:19:52Z) - Classifier-head Informed Feature Masking and Prototype-based Logit
Smoothing for Out-of-Distribution Detection [27.062465089674763]
ニューラルネットワークを現実世界にデプロイする際には、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
1つの大きな課題は、ニューラルネットワークがOODデータに対して過信的な予測をすることです。
本稿では,新しい特徴マスキング戦略と新しいロジット平滑化戦略に基づく,効果的なポストホックOOD検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T12:42:17Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
論文 参考訳(メタデータ) (2023-02-06T08:24:41Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - How to Exploit Hyperspherical Embeddings for Out-of-Distribution
Detection? [22.519572587827213]
CIDERは、OOD検出に超球面埋め込みを利用する表現学習フレームワークである。
CIDERは優れたパフォーマンスを確立し、FPR95では19.36%で最新のライバルを上回った。
論文 参考訳(メタデータ) (2022-03-08T23:44:01Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
ディープ・ニューラル・ネットワークに基づく分類器のトレーニングデータは、通常同じ分布からサンプリングされる。
トレーニングサンプルから遠く離れた分布からテストサンプルの一部を引き出すと、トレーニングされたニューラルネットワークはこれらのOODサンプルに対して高い信頼性の予測を行う傾向にある。
本稿では,これらの課題を克服するため,Wasserstein を用いたアウト・オブ・ディストリビューション検出(WOOD)手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。