論文の概要: QiBERT -- Classifying Online Conversations Messages with BERT as a Feature
- arxiv url: http://arxiv.org/abs/2409.05530v1
- Date: Mon, 9 Sep 2024 11:38:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:00:05.326194
- Title: QiBERT -- Classifying Online Conversations Messages with BERT as a Feature
- Title(参考訳): QiBERT -- BERTを特徴とするオンライン会話メッセージの分類
- Authors: Bruno D. Ferreira-Saraiva, Zuil Pirola, João P. Matos-Carvalho, Manuel Marques-Pita,
- Abstract要約: 本稿では,ポルトガルの学校におけるオンライン社会会話から得られたデータを用いて行動傾向を観察することを目的とする。
このプロジェクトでは、BERTベースのモデルを通じて、最先端(SoA)機械学習アルゴリズムと手法を使用して、発話が議論の対象の内外かどうかを分類する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in online communication and their usage in everyday life have caused an explosion in the amount of a new genre of text data, short text. Thus, the need to classify this type of text based on its content has a significant implication in many areas. Online debates are no exception, once these provide access to information about opinions, positions and preferences of its users. This paper aims to use data obtained from online social conversations in Portuguese schools (short text) to observe behavioural trends and to see if students remain engaged in the discussion when stimulated. This project used the state of the art (SoA) Machine Learning (ML) algorithms and methods, through BERT based models to classify if utterances are in or out of the debate subject. Using SBERT embeddings as a feature, with supervised learning, the proposed model achieved results above 0.95 average accuracy for classifying online messages. Such improvements can help social scientists better understand human communication, behaviour, discussion and persuasion.
- Abstract(参考訳): 近年のオンラインコミュニケーションの進展と日常生活における利用状況は,新たなテキストデータ,短いテキストのジャンルの爆発的な増加を引き起こしている。
したがって、このタイプのテキストをその内容に基づいて分類する必要性は、多くの分野において重要な意味を持つ。
オンライン討論は例外ではなく、ユーザーが意見や位置、好みなどの情報にアクセスできるようになる。
本稿では,ポルトガルの学校(短文)におけるオンライン社会会話から得られたデータを用いて,行動傾向を観察し,学生が刺激を受けた場合の議論に関わり続けるかどうかを確認することを目的とする。
このプロジェクトでは、BERTベースのモデルを通じて、最先端(SoA)機械学習(ML)アルゴリズムとメソッドを使用して、発話が議論の対象の内外かどうかを分類する。
SBERT埋め込みを特徴として、教師付き学習を用いて、オンラインメッセージの分類における平均精度0.95を超える結果を得た。
このような改善は、社会科学者が人間のコミュニケーション、行動、議論、説得をよりよく理解するのに役立ちます。
関連論文リスト
- Analysis of the User Perception of Chatbots in Education Using A Partial
Least Squares Structural Equation Modeling Approach [0.0]
オプティミズム、イノベーティブネス、不快感、不安、透明性、倫理、相互作用、エンゲージメント、正確さといった主要な行動関連側面について研究した。
その結果、最適性と革新性は、知覚的使用覚(PEOU)と知覚的有用性(PU)に正の相関があることが判明した。
論文 参考訳(メタデータ) (2023-11-07T00:44:56Z) - Learning From Free-Text Human Feedback -- Collect New Datasets Or Extend
Existing Ones? [57.16050211534735]
一般的な対話データセットにおける自由文フィードバックのタイプと頻度について検討する。
この結果から, エラータイプ, ユーザ応答タイプ, それらの関係性など, 調査したデータセットの構成に関する新たな知見が得られた。
論文 参考訳(メタデータ) (2023-10-24T12:01:11Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Fine-Tuning Llama 2 Large Language Models for Detecting Online Sexual
Predatory Chats and Abusive Texts [2.406214748890827]
本稿では,Llama 2 7B-パラメーターモデルを用いて,オンライン性的捕食チャットと虐待言語の検出手法を提案する。
我々は、異なる大きさ、不均衡度、言語(英語、ローマ・ウルドゥー語、ウルドゥー語)のデータセットを用いてLLMを微調整する。
実験結果から,提案手法は3つの異なるデータセットに対して精度よく一貫した性能を示す。
論文 参考訳(メタデータ) (2023-08-28T16:18:50Z) - AutoConv: Automatically Generating Information-seeking Conversations
with Large Language Models [74.10293412011455]
合成会話生成のためのAutoConvを提案する。
具体的には,会話生成問題を言語モデリングタスクとして定式化する。
我々は、情報探索プロセスの特徴を捉えるために、人間同士の会話でLLMを微調整する。
論文 参考訳(メタデータ) (2023-08-12T08:52:40Z) - NewsDialogues: Towards Proactive News Grounded Conversation [72.10055780635625]
本稿では,対話システムがニュースの重要な話題に基づいて会話を積極的にリードする新しいタスク,Proactive News Grounded Conversationを提案する。
この課題をさらに発展させるために、人間と人間の対話データセットtsNewsDialoguesを収集し、合計14.6Kの発話を含む1Kの会話を含む。
論文 参考訳(メタデータ) (2023-08-12T08:33:42Z) - Fine-Tuning Approach for Arabic Offensive Language Detection System:
BERT-Based Model [0.0]
本研究では,アラビア語攻撃言語データセットにおける微調整の効果について検討した。
我々は4つのデータセットを個別に組み合わせて、オンラインアラビア攻撃コンテンツに関する知識を得るために複数の分類器を開発する。
論文 参考訳(メタデータ) (2022-02-07T17:26:35Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
我々は、生成会話ネットワークを使用して、自動的にデータを生成し、社会的会話エージェントを訓練する。
自動メトリクスと人的評価器を用いてTopicalChatのアプローチを評価し、10%のシードデータで100%のデータを使用するベースラインに近いパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-15T21:46:39Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
ごく少数の例を使って会話を学ぶことは、会話型AIにおける大きな課題である。
現在の最良の会話モデルは、良いチャットシャッター(例:BlenderBot)またはゴール指向システム(例:MinTL)である。
グラデーションベースの微調整を必要とせず、学習の唯一の源としていくつかの例を用いるプロンプトベースの数ショット学習を提案する。
論文 参考訳(メタデータ) (2021-10-15T14:36:45Z) - Transfer Learning Approach for Arabic Offensive Language Detection
System -- BERT-Based Model [0.0]
サイバーヘイト、オンラインハラスメント、その他のテクノロジーの誤用が増えている。
ナチュラル・ランゲージ・プロセッシング(NLP)分野の高度な技術を活用して、オンラインヘイトフリーコミュニティの開発を支援することは、社会正義にとって重要な課題である。
本研究は,複数のアラビア語攻撃言語データセットに対する双方向変換モデル(BERT)の微調整と訓練の効果を個別に検討することを目的とする。
論文 参考訳(メタデータ) (2021-02-09T04:58:18Z) - Using Machine Learning and Natural Language Processing Techniques to
Analyze and Support Moderation of Student Book Discussions [0.0]
IMapBookプロジェクトは、小学生のリテラシー向上と理解能力向上を目的として、インタラクティブな電子書籍を提示し、中途半端な本議論に参加することを目的としている。
本研究の目的は、メッセージ分類に対する機械学習ベースのアプローチを開発し、介入の必要性を議論モデレーターに自動的に通知し、進行中の議論に関する他の有用な情報を収集することである。
論文 参考訳(メタデータ) (2020-11-23T20:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。