Preparing Schrödinger cat states in a microwave cavity using a neural network
- URL: http://arxiv.org/abs/2409.05557v1
- Date: Mon, 9 Sep 2024 12:28:02 GMT
- Title: Preparing Schrödinger cat states in a microwave cavity using a neural network
- Authors: Hector Hutin, Pavlo Bilous, Chengzhi Ye, Sepideh Abdollahi, Loris Cros, Tom Dvir, Tirth Shah, Yonatan Cohen, Audrey Bienfait, Florian Marquardt, Benjamin Huard,
- Abstract summary: We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states.
Results demonstrate how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.
Related papers
- Training-efficient density quantum machine learning [2.918930150557355]
Quantum machine learning requires powerful, flexible and efficiently trainable models.
We present density quantum neural networks, a learning model incorporating randomisation over a set of trainable unitaries.
arXiv Detail & Related papers (2024-05-30T16:40:28Z) - Echo-evolution data generation for quantum error mitigation via neural
networks [0.0]
We propose a physics-motivated method to generate training data for quantum error mitigation via neural networks.
Under this method, the initial state evolves forward and backward in time, returning to the initial state at the end of evolution.
We demonstrate that a feed-forward fully connected neural network trained on echo-evolution-generated data can correct results of forward-in-time evolution.
arXiv Detail & Related papers (2023-11-01T12:40:10Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
In this work, we explore binary neural networks, which are lightweight yet powerful models typically intended for resource constrained devices.
We devise a quadratic unconstrained binary optimization formulation for the training problem.
While the problem is intractable, i.e., the cost to estimate the binary weights scales exponentially with network size, we show how the problem can be optimized directly on a quantum annealer.
arXiv Detail & Related papers (2021-07-05T03:20:54Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z) - Quantum implementation of an artificial feed-forward neural network [0.0]
We show an experimental realization of an artificial feed-forward neural network implemented on a state-of-art superconducting quantum processor.
The network is made of quantum artificial neurons, which individually display a potential advantage in storage capacity.
We demonstrate that this network can be equivalently operated either via classical control or in a completely coherent fashion.
arXiv Detail & Related papers (2019-12-28T16:49:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.