論文の概要: LLMs Will Always Hallucinate, and We Need to Live With This
- arxiv url: http://arxiv.org/abs/2409.05746v1
- Date: Mon, 9 Sep 2024 16:01:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 14:06:46.351962
- Title: LLMs Will Always Hallucinate, and We Need to Live With This
- Title(参考訳): LLMは、常に幻覚になる。それで生きていく必要がある
- Authors: Sourav Banerjee, Ayushi Agarwal, Saloni Singla,
- Abstract要約: この研究は、言語モデルにおける幻覚は時折エラーであるだけでなく、これらのシステムの必然的な特徴であると主張している。
したがって、アーキテクチャの改善、データセットの強化、ファクトチェックメカニズムを通じてそれらを取り除くことは不可能である。
- 参考スコア(独自算出の注目度): 1.3810901729134184
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As Large Language Models become more ubiquitous across domains, it becomes important to examine their inherent limitations critically. This work argues that hallucinations in language models are not just occasional errors but an inevitable feature of these systems. We demonstrate that hallucinations stem from the fundamental mathematical and logical structure of LLMs. It is, therefore, impossible to eliminate them through architectural improvements, dataset enhancements, or fact-checking mechanisms. Our analysis draws on computational theory and Godel's First Incompleteness Theorem, which references the undecidability of problems like the Halting, Emptiness, and Acceptance Problems. We demonstrate that every stage of the LLM process-from training data compilation to fact retrieval, intent classification, and text generation-will have a non-zero probability of producing hallucinations. This work introduces the concept of Structural Hallucination as an intrinsic nature of these systems. By establishing the mathematical certainty of hallucinations, we challenge the prevailing notion that they can be fully mitigated.
- Abstract(参考訳): 大規模言語モデルがドメインにまたがってよりユビキタスになるにつれて、それら固有の制限を批判的に検討することが重要になる。
この研究は、言語モデルにおける幻覚は時折エラーであるだけでなく、これらのシステムの必然的な特徴であると主張している。
幻覚は LLM の基本数学的および論理的構造に由来することを実証する。
したがって、アーキテクチャの改善、データセットの強化、ファクトチェックメカニズムを通じてそれらを取り除くことは不可能である。
我々の分析は、計算理論とゴデルの第一不完全性理論に基づいており、これはハルティング、経験、受容問題といった問題の不決定性に言及している。
学習データコンパイルから事実検索,意図分類,テキスト生成に至るまで,LLMプロセスのすべての段階が幻覚を発生させる確率がゼロではないことを実証する。
この研究は、これらのシステムの本質的な性質として、構造的幻覚の概念を導入している。
幻覚の数学的確実性を確立することによって、完全に緩和できるという一般的な概念に挑戦する。
関連論文リスト
- Banishing LLM Hallucinations Requires Rethinking Generalization [2.0155206466638016]
大きな言語モデル(LLM)は、強力なチャット、コーディング、推論能力にもかかわらず、しばしば幻覚する。
大規模メモリエキスパート(MoME)を付加したLCMは、乱数の大きなデータセットを容易に記憶できることを示す。
われわれの研究結果は、幻覚を除去する第1世代モデル、Lamini-1を設計し、事実を数百万のメモリ専門家の膨大な混在に保存する。
論文 参考訳(メタデータ) (2024-06-25T15:31:01Z) - Mitigating Large Language Model Hallucination with Faithful Finetuning [46.33663932554782]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
彼らは「幻覚」として知られる、流動的で不合理な反応を生み出す傾向にある
論文 参考訳(メタデータ) (2024-06-17T07:16:07Z) - On Large Language Models' Hallucination with Regard to Known Facts [74.96789694959894]
大規模な言語モデルはファクトイドの質問に答えることに成功したが、幻覚を起こす傾向がある。
正しい解答知識を持つLLMの現象を推論力学の観点から検討する。
我々の研究は、LLMの幻覚が既知の事実について、そしてより重要なのは、幻覚を正確に予測する理由を理解することに光を当てた。
論文 参考訳(メタデータ) (2024-03-29T06:48:30Z) - Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models [52.957842999317506]
オブジェクト幻覚(Object Hallucination)とは、LVLMが画像に存在しない物体を主張する現象である。
本稿では,物体の幻覚検出と緩和,すなわちLogicCheckGPTのための論理閉ループベースのフレームワークを提案する。
プラグアンドプレイ法として、既存のすべてのLVLMにシームレスに適用することができる。
論文 参考訳(メタデータ) (2024-02-18T15:28:39Z) - Hallucination is Inevitable: An Innate Limitation of Large Language
Models [3.8711997449980844]
大規模言語モデルでは幻覚を除去することは不可能である。
フォーマルな世界は現実の世界の一部であり、より複雑であるため、幻覚は現実世界のLLMにも必然的である。
論文 参考訳(メタデータ) (2024-01-22T10:26:14Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
幻覚は、大きな言語モデルの信頼できるデプロイには大きな課題となります。
幻覚(検出)の検出方法、LLMが幻覚(ソース)をなぜ検出するのか、そしてそれを緩和するために何ができるか、という3つの重要な疑問がよく研究されるべきである。
本研究は, 幻覚検出, 発生源, 緩和の3つの側面に着目した, LLM幻覚の系統的研究である。
論文 参考訳(メタデータ) (2024-01-06T12:40:45Z) - A Comprehensive Survey of Hallucination Mitigation Techniques in Large
Language Models [7.705767540805267]
大きな言語モデル(LLM)は、人間のようなテキストを書く能力の進歩を続けている。
重要な課題は、事実に見えるが根拠のないコンテンツを生み出すことを幻覚させる傾向にある。
本稿では,LLMにおける幻覚を緩和するために開発された32以上の技術について調査する。
論文 参考訳(メタデータ) (2024-01-02T17:56:30Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
機械生成データに固有の幻覚は未発見のままである。
本稿では,クロスチェックパラダイムに基づく新しい幻覚検出・除去フレームワークであるHaluciDoctorを提案する。
LLaVAに比べて44.6%の幻覚を緩和し,競争性能を維持した。
論文 参考訳(メタデータ) (2023-11-22T04:52:58Z) - A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions [40.79317187623401]
大規模言語モデル(LLM)の出現は、自然言語処理(NLP)において大きなブレークスルーとなった。
LLMは幻覚を起こす傾向があり、可視だが非現実的な内容を生成する。
この現象は、実世界の情報検索システムにおけるLCMの信頼性に対する重大な懸念を引き起こす。
論文 参考訳(メタデータ) (2023-11-09T09:25:37Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。