論文の概要: Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits
- arxiv url: http://arxiv.org/abs/2409.05813v1
- Date: Mon, 9 Sep 2024 17:20:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 13:46:22.161724
- Title: Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits
- Title(参考訳): 超伝導回路におけるボソニックグリッド状態を用いたハードウェア効率の良いフォールトトレラント量子コンピューティング
- Authors: Marc-Antoine Lemonde, Dany Lachance-Quirion, Guillaume Duclos-Cianci, Nicholas E. Frattini, Florian Hopfmueller, Chloe Gauvin-Ndiaye, Julien Camirand-Lemyre, Philippe St-Jean,
- Abstract要約: この観点の原稿は、ボソニックなコード、特にグリッド状態のエンコーディングが、スケーラブルなフォールトトレラント量子コンピューティングへの経路を提供する方法を記述している。
ボソニックモードのヒルベルト空間を利用することで、量子誤差補正は単一の物理単位レベルで動作することができる。
論理クロックレートがMHzのゲートベースの量子コンピューティングプロセッサにおいて,フォールトトレランスを達成するための最短経路である,と我々は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing holds the promise of solving classically intractable problems. Enabling this requires scalable and hardware-efficient quantum processors with vanishing error rates. This perspective manuscript describes how bosonic codes, particularly grid state encodings, offer a pathway to scalable fault-tolerant quantum computing in superconducting circuits. By leveraging the large Hilbert space of bosonic modes, quantum error correction can operate at the single physical unit level, therefore reducing drastically the hardware requirements to bring fault-tolerant quantum computing to scale. Going beyond the well-known Gottesman-Kitaev-Preskill (GKP) code, we discuss how using multiple bosonic modes to encode a single qubit offers increased protection against control errors and enhances its overall error-correcting capabilities. Given recent successful demonstrations of critical components of this architecture, we argue that it offers the shortest path to achieving fault tolerance in gate-based quantum computing processors with a MHz logical clock rate.
- Abstract(参考訳): 量子コンピューティングは古典的に難解な問題を解くという約束を持っている。
これを実現するには、スケーラブルでハードウェア効率のよい量子プロセッサが必要である。
この観点の原稿は、超伝導回路において、ボソニック符号、特にグリッド状態符号化がスケーラブルなフォールトトレラント量子コンピューティングへの経路を提供する方法について記述している。
ボソニックモードのヒルベルト空間を利用することで、量子エラー補正は単一の物理単位レベルで動作することができるため、フォールトトレラントな量子コンピューティングをスケールさせるためにハードウェア要件を大幅に削減できる。
有名なGottesman-Kitaev-Preskill (GKP) コードを超えて、単一キュービットを符号化するために複数のボソニックモードを用いることで、制御エラーに対する保護が強化され、全体的なエラー訂正能力が向上する方法について論じる。
近年、このアーキテクチャの重要なコンポーネントの実証が成功していることから、MHz論理クロックレートのゲートベースの量子コンピューティングプロセッサにおいて、フォールトトレランスを達成するための最短経路を提供すると論じている。
関連論文リスト
- Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
スケーラブルでプログラム可能な量子コンピュータは、コンピュータが合理的な時間枠で達成できない計算集約的なタスクを解く可能性を持ち、量子優位性を達成する。
現在の量子プロセッサのエラーに対する脆弱性は、実用的な問題に必要な複雑で深い量子回路の実行に重大な課題をもたらす。
我々の研究は、現在の世代の量子ハードウェアを用いた超伝導体ベースのプロセッサにおいて、論理的CNOTゲートとエラー検出を併用できる可能性を確立した。
論文 参考訳(メタデータ) (2024-06-18T04:50:15Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
ボソニックモード超伝導回路におけるコヒーレント状態量子プロセストモグラフィ(csQPT)の使用を実証する。
符号化量子ビット上の変位とSNAP演算を用いて構築した論理量子ゲートを特徴付けることにより,本手法の結果を示す。
論文 参考訳(メタデータ) (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
本稿では,外部量子誤り訂正符号を用いた猫符号に基づくフォールトトレラント量子コンピュータを提案する。
我々は、外符号が繰り返し符号か薄い矩形曲面符号である場合、量子誤差補正を数値的にシミュレートする。
約1,000の超伝導回路部品で、フォールトトレラントな量子コンピュータを構築することができる。
論文 参考訳(メタデータ) (2020-12-07T23:22:40Z) - Bosonic quantum error correction codes in superconducting quantum
circuits [0.0]
Gottesman-Kitaev-Preskill符号、猫符号、二項符号など、最近のボソニック符号の進歩を概観する。
本稿では、フォールトトレラント量子計算から量子メートル法まで、様々な量子アプリケーションにおけるボソニック符号の機会について論じる。
論文 参考訳(メタデータ) (2020-10-17T02:58:37Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Quantum information processing with bosonic qubits in circuit QED [1.2891210250935146]
ボソニック符号を用いた量子誤り訂正の理論と実装の最近の展開を概観する。
我々は,cQEDデバイスを用いたフォールトトレラントな量子情報処理の実現に向けた進展を報告する。
論文 参考訳(メタデータ) (2020-08-31T10:27:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。