End-to-End Quantum Simulation of a Chemical System
- URL: http://arxiv.org/abs/2409.05835v1
- Date: Mon, 9 Sep 2024 17:41:44 GMT
- Title: End-to-End Quantum Simulation of a Chemical System
- Authors: Wim van Dam, Hongbin Liu, Guang Hao Low, Adam Paetznick, Andres Paz, Marcus Silva, Aarthi Sundaram, Krysta Svore, Matthias Troyer,
- Abstract summary: We demonstrate the first end-to-end integration of high-performance computing, reliable quantum computing, and AI.
We present a hybrid computation workflow to determine the strongly correlated reaction configurations and estimate, for one such configuration, its active site's ground state energy.
- Score: 2.603151203581752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate the first end-to-end integration of high-performance computing (HPC), reliable quantum computing, and AI in a case study on catalytic reactions producing chiral molecules. We present a hybrid computation workflow to determine the strongly correlated reaction configurations and estimate, for one such configuration, its active site's ground state energy. We combine 1) the use of HPC tools like AutoRXN and AutoCAS to systematically identify the strongly correlated chemistry within a large chemical space with 2) the use of logical qubits in the quantum computing stage to prepare the quantum ground state of the strongly correlated active site, demonstrating the advantage of logical qubits compared to physical qubits, and 3) the use of optimized quantum measurements of the logical qubits with so-called classical shadows to accurately predict various properties of the ground state including energies. The combination of HPC, reliable quantum computing, and AI in this demonstration serves as a proof of principle of how future hybrid chemistry applications will require integration of large-scale quantum computers with classical computing to be able to provide a measurable quantum advantage.
Related papers
- Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Reliably assessing the electronic structure of cytochrome P450 on
today's classical computers and tomorrow's quantum computers [0.4215938932388722]
We explore the quantum and classical resources required to assess the electronic structure of P450 enzymes (CYPs)
The quantum resources required to perform phase estimation using qubitized quantum walks are calculated for the same systems.
Both classical and quantum resource estimates suggest that simulation of CYP models at scales large enough to balance dynamic and multiconfigurational electron correlation has the potential to be a quantum advantage problem.
arXiv Detail & Related papers (2022-02-02T19:01:07Z) - Estimating Phosphorescent Emission Energies in Ir(III) Complexes using
Large-Scale Quantum Computing Simulations [0.0]
We apply the iterative qubit coupled cluster (iQCC) method on classical hardware to the calculation of the transition energies in nine phosphorescent iridium complexes.
Our simulations would require a gate-based quantum computer with a minimum of 72 fully-connected and error-corrected logical qubits.
The iQCC quantum method is found to match the accuracy of the fine-tuned DFT functionals, has a better Pearson correlation coefficient, and still has considerable potential for systematic improvement.
arXiv Detail & Related papers (2021-11-07T20:02:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - How will quantum computers provide an industrially relevant
computational advantage in quantum chemistry? [0.0]
We go over subtle complications of quantum chemical research that tend to be overlooked in discussions involving quantum computers.
We estimate quantum computer resources that will be required for performing calculations on quantum computers with chemical accuracy for several types of molecules.
arXiv Detail & Related papers (2020-09-25T23:21:16Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum computing enhanced computational catalysis [2.285928372124628]
We present an analysis of accurate energy measurements on a quantum computer for computational magnitude.
New quantum algorithms for double-factorized representations of the four-indexs can significantly reduce the computational cost.
We discuss the challenges of increasing active space sizes to accurately deal with dynamical correlations.
arXiv Detail & Related papers (2020-07-28T20:07:43Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.