論文の概要: Quantum Wasserstein Compilation: Unitary Compilation using the Quantum Earth Mover's Distance
- arxiv url: http://arxiv.org/abs/2409.05849v1
- Date: Mon, 9 Sep 2024 17:46:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 13:36:22.891744
- Title: Quantum Wasserstein Compilation: Unitary Compilation using the Quantum Earth Mover's Distance
- Title(参考訳): 量子ワッサースタインコンパイル:量子アースモーバー距離を用いたユニタリコンパイル
- Authors: Marvin Richter, Abhishek Y. Dubey, Axel Plinge, Christopher Mutschler, Daniel D. Scherer, Michael J. Hartmann,
- Abstract要約: 次数1の量子ワッサーシュタイン距離に基づく量子ワッサーシュタインコンパイル(QWC)コスト関数を提案する。
生成逆数ネットワークにおいて、局所的なパウリ可観測値の測定に基づく推定方法を用いて、所定の量子回路を学習する。
- 参考スコア(独自算出の注目度): 2.502222151305252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite advances in the development of quantum computers, the practical application of quantum algorithms remains outside the current range of so-called noisy intermediate-scale quantum devices. Now and beyond, quantum circuit compilation (QCC) is a crucial component of any quantum algorithm execution. Besides translating a circuit into hardware-specific gates, it can optimize circuit depth and adapt to noise. Variational quantum circuit compilation (VQCC) optimizes the parameters of an ansatz according to the goal of reproducing a given unitary transformation. In this work, we present a VQCC-objective function called the quantum Wasserstein compilation (QWC) cost function based on the quantum Wasserstein distance of order 1. We show that the QWC cost function is upper bound by the average infidelity of two circuits. An estimation method based on measurements of local Pauli-observable is utilized in a generative adversarial network to learn a given quantum circuit. We demonstrate the efficacy of the QWC cost function by compiling a single-layer hardware efficient ansatz (HEA) as both the target and the ansatz and comparing other cost functions such as the Loschmidt echo test (LET) and the Hilbert-Schmidt test (HST). Finally, our experiments demonstrate that QWC as a cost function can mitigate the barren plateaus for the particular problem we consider.
- Abstract(参考訳): 量子コンピュータの発展にもかかわらず、量子アルゴリズムの実践的応用は、いわゆるノイズの多い中間量子デバイスの範囲外にとどまっている。
現在、量子回路コンパイル(QCC)は、あらゆる量子アルゴリズムの実行において重要なコンポーネントである。
回路をハードウェア固有のゲートに翻訳するだけでなく、回路の深さを最適化し、ノイズに適応できる。
変分量子回路コンパイル(VQCC)は、与えられたユニタリ変換を再現する目的に応じて、アンザッツのパラメータを最適化する。
本研究では,次数1の量子ワッサーシュタイン距離に基づく量子ワッサースタインコンパイル(QWC)コスト関数と呼ばれるVQCC対象関数を提案する。
本稿では,QWCのコスト関数が2つの回路の平均不整合によって上界にあることを示す。
生成逆数ネットワークにおいて、局所的なパウリ可観測値の測定に基づく推定方法を用いて、所定の量子回路を学習する。
単層ハードウェアの効率的なアンザッツ(HEA)を目標とアンザッツの両方にコンパイルし,ロシミットエコーテスト(LET)やヒルベルト・シュミットテスト(HST)などのコスト関数と比較することにより,QWCコスト関数の有効性を実証した。
最後に、コスト関数としてのQWCは、我々が考慮している特定の問題に対して不毛の台地を緩和できることを示す。
関連論文リスト
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search [0.9932551365711049]
本稿では,量子処理ユニットと制御プロトコルのネイティブゲートに基づく比較解析を行うソフトウェアツールを提案する。
開発されたソフトウェアYAQQ(Yet Another Quantum Quantizer)は、最適化された量子ゲートセットの発見を可能にする。
論文 参考訳(メタデータ) (2024-06-25T14:55:35Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Evaluating Ground State Energies of Chemical Systems with Low-Depth
Quantum Circuits and High Accuracy [6.81054341190257]
我々は,Qubit Coupled Cluster (QCC) に基づく拡張型変分量子固有解器 (VQE) アンサッツを開発した。
我々は、IBM KolkataとQuantinuum H1-1の2つの異なる量子ハードウェア上で、拡張QCCアンサッツを評価する。
論文 参考訳(メタデータ) (2024-02-21T17:45:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
ボソニックモード超伝導回路におけるコヒーレント状態量子プロセストモグラフィ(csQPT)の使用を実証する。
符号化量子ビット上の変位とSNAP演算を用いて構築した論理量子ゲートを特徴付けることにより,本手法の結果を示す。
論文 参考訳(メタデータ) (2023-03-02T18:08:08Z) - Improving the speed of variational quantum algorithms for quantum error
correction [7.608765913950182]
本稿では、量子回路に作用する汎用量子ノイズに対して、適切な量子誤り補正(QEC)手順を考案する問題を考察する。
一般に、符号化と補正のユニタリゲートを得るための解析的普遍的な手順は存在しない。
次数1の量子ワッサーシュタイン距離に基づくコスト関数を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2023-01-12T19:44:53Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
変分量子固有解法(VQE)は、ハミルトニアンの固有値と固有値を見つけるためにハイブリッド量子古典計算法を用いる方法である。
VQEは、様々な小さな分子に対する電子的シュリンガー方程式の解法に成功している。
現代の量子コンピュータは、現在利用可能なアンサツェを用いて生成されたディープ量子回路を実行することができない。
論文 参考訳(メタデータ) (2021-03-15T16:25:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。