論文の概要: CSRec: Rethinking Sequential Recommendation from A Causal Perspective
- arxiv url: http://arxiv.org/abs/2409.05872v1
- Date: Fri, 23 Aug 2024 23:19:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:31:27.766675
- Title: CSRec: Rethinking Sequential Recommendation from A Causal Perspective
- Title(参考訳): CSRec: シークエンシャルレコメンデーションを因果的視点から再考
- Authors: Xiaoyu Liu, Jiaxin Yuan, Yuhang Zhou, Jingling Li, Furong Huang, Wei Ai,
- Abstract要約: シーケンシャルなレコメンデータシステム(RecSys)の本質は、ユーザが意思決定を行う方法を理解することです。
我々は、CSRec(Causal Sequential Recommendation)と呼ばれる、シーケンシャルレコメンデーションの新しい定式化を提案する。
CSRecは、シーケンシャルなコンテキスト内で推奨項目が受け入れられる確率を予測し、現在の決定がどのようになされるかをバックトラックすることを目的としている。
- 参考スコア(独自算出の注目度): 25.69446083970207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The essence of sequential recommender systems (RecSys) lies in understanding how users make decisions. Most existing approaches frame the task as sequential prediction based on users' historical purchase records. While effective in capturing users' natural preferences, this formulation falls short in accurately modeling actual recommendation scenarios, particularly in accounting for how unsuccessful recommendations influence future purchases. Furthermore, the impact of the RecSys itself on users' decisions has not been appropriately isolated and quantitatively analyzed. To address these challenges, we propose a novel formulation of sequential recommendation, termed Causal Sequential Recommendation (CSRec). Instead of predicting the next item in the sequence, CSRec aims to predict the probability of a recommended item's acceptance within a sequential context and backtrack how current decisions are made. Critically, CSRec facilitates the isolation of various factors that affect users' final decisions, especially the influence of the recommender system itself, thereby opening new avenues for the design of recommender systems. CSRec can be seamlessly integrated into existing methodologies. Experimental evaluations on both synthetic and real-world datasets demonstrate that the proposed implementation significantly improves upon state-of-the-art baselines.
- Abstract(参考訳): シーケンシャルなレコメンデータシステム(RecSys)の本質は、ユーザが意思決定を行う方法を理解することです。
既存のアプローチのほとんどは、ユーザの履歴購入履歴に基づいて、タスクをシーケンシャルな予測とみなしている。
ユーザの自然な嗜好を捉えるのに効果的であるが、この定式化は実際のレコメンデーションシナリオを正確にモデル化するには不十分である。
さらに、RecSys自体がユーザの判断に与える影響は、適切に分離され、定量的に分析されていない。
これらの課題に対処するため,CSRec(Causal Sequential Recommendation)と呼ばれるシーケンシャルレコメンデーションの新たな定式化を提案する。
シーケンス内の次の項目を予測する代わりに、CSRecは、推奨項目がシーケンシャルなコンテキスト内で受け入れられる確率を予測し、現在の決定をバックトラックすることを目指している。
批判的に、CSRecはユーザーの最終決定に影響を及ぼす様々な要因、特にレコメンダシステム自体の影響を分離し、レコメンダシステムの設計のための新たな道を開く。
CSRecは、既存の方法論にシームレスに統合できる。
合成と実世界の両方のデータセットに対する実験的評価により、提案手法は最先端のベースラインにおいて大幅に改善されることが示された。
関連論文リスト
- Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
本稿では,長期シナリオにおけるユーザ-リコメンダ間のインタラクションを模倣するシミュレーションフレームワークを提案する。
本稿では,ユーザの嗜好に対するアルゴリズムの影響を定量化する2つの新しい指標について紹介する。
論文 参考訳(メタデータ) (2024-09-24T21:54:22Z) - AdaRec: Adaptive Sequential Recommendation for Reinforcing Long-term
User Engagement [25.18963930580529]
本稿では,AdaRec(Adaptive Sequential Recommendation)と呼ばれる新しいパラダイムを紹介し,この問題に対処する。
AdaRecは、ユーザのインタラクション軌跡から潜時情報を抽出する、新しい距離ベース表現損失を提案する。
シミュレーションベースとライブシーケンシャルなレコメンデーションタスクの両方において、広範な実証分析を行う。
論文 参考訳(メタデータ) (2023-10-06T02:45:21Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - CausPref: Causal Preference Learning for Out-of-Distribution
Recommendation [36.22965012642248]
現在のレコメンデータシステムは、現実的なシナリオにおけるユーザやアイテムの配布シフトに対して、依然として脆弱である。
本稿では,推奨特化DAG学習者を因果選好に基づく推薦フレームワークCausPrefに組み込むことを提案する。
当社のアプローチは、アウト・オブ・ディストリビューション・セッティングのタイプにおいて、ベンチマークモデルを大幅に上回っている。
論文 参考訳(メタデータ) (2022-02-08T16:42:03Z) - Top-N Recommendation with Counterfactual User Preference Simulation [26.597102553608348]
ユーザーランキングに基づく好みの学習を目的としたTop-Nレコメンデーションは、長い間、広範囲のアプリケーションにおいて基本的な問題だった。
本稿では,データ不足問題に対処するため,因果推論フレームワーク内での推薦タスクの再構築を提案する。
論文 参考訳(メタデータ) (2021-09-02T14:28:46Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Latent Unexpected Recommendations [89.2011481379093]
ユーザとアイテムの埋め込みの潜伏した空間における予測性をモデル化し、新しいレコメンデーションと歴史的購入の間の隠れた複雑な関係を捉えることを提案する。
さらに,ハイブリッドユーティリティ機能の構築と,提案モデルに基づく予期せぬ推薦を行うための新しい潜在クロージャ(LC)手法を開発した。
論文 参考訳(メタデータ) (2020-07-27T02:39:30Z) - Counterfactual Evaluation of Slate Recommendations with Sequential
Reward Interactions [18.90946044396516]
音楽ストリーミング、ビデオストリーミング、ニュースレコメンデーション、eコマースサービスは、しばしばシーケンシャルな方法でコンテンツを扱う。
したがって、適切なレコメンデーションのシーケンスの提供と評価は、これらのサービスにとって重要な問題である。
そこで本研究では,アナルアンバイアスの少ない報酬の逐次的相互作用が可能な新しい反事実推定器を提案する。
論文 参考訳(メタデータ) (2020-07-25T17:58:01Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
ベイズ的アプローチに基づく会話推薦システムを提案する。
エンターテイナーを予約するオンラインプラットフォームであるemphstagend.comへのこのアプローチの適用に基づくケーススタディについて論じる。
論文 参考訳(メタデータ) (2020-02-12T15:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。