論文の概要: Assessing SPARQL capabilities of Large Language Models
- arxiv url: http://arxiv.org/abs/2409.05925v1
- Date: Mon, 9 Sep 2024 08:29:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 21:59:49.921527
- Title: Assessing SPARQL capabilities of Large Language Models
- Title(参考訳): 大規模言語モデルのSPARQL機能を評価する
- Authors: Lars-Peter Meyer, Johannes Frey, Felix Brei, Natanael Arndt,
- Abstract要約: 我々は、SPARQLで動作するLarge Language Modelsのアウトオブザボックス機能の測定に重点を置いています。
LLM-KG-Benchフレームワークにベンチマークタスクを実装し,自動実行と評価を行う。
この結果から,SPARQL SELECTクエリの処理はLLMでは依然として困難であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Large Language Models (LLMs) with Knowledge Graphs (KGs) offers significant synergistic potential for knowledge-driven applications. One possible integration is the interpretation and generation of formal languages, such as those used in the Semantic Web, with SPARQL being a core technology for accessing KGs. In this paper, we focus on measuring out-of-the box capabilities of LLMs to work with SPARQL and more specifically with SPARQL SELECT queries applying a quantitative approach. We implemented various benchmarking tasks in the LLM-KG-Bench framework for automated execution and evaluation with several LLMs. The tasks assess capabilities along the dimensions of syntax, semantic read, semantic create, and the role of knowledge graph prompt inclusion. With this new benchmarking tasks, we evaluated a selection of GPT, Gemini, and Claude models. Our findings indicate that working with SPARQL SELECT queries is still challenging for LLMs and heavily depends on the specific LLM as well as the complexity of the task. While fixing basic syntax errors seems to pose no problems for the best of the current LLMs evaluated, creating semantically correct SPARQL SELECT queries is difficult in several cases.
- Abstract(参考訳): LLM(Large Language Models)とKG(Knowledge Graphs)の統合は、知識駆動アプリケーションにおいて大きなシナジスティックなポテンシャルを提供する。
統合可能な1つは、セマンティックウェブで使用されるような形式言語を解釈して生成することであり、SPARQLはKGにアクセスするための中核技術である。
本稿では,SPARQL と SPARQL SELECT を併用する LLM のアウト・オブ・ザ・ボックス能力の測定に焦点をあてる。
LLM-KG-Bench フレームワークに様々なベンチマークタスクを実装し,複数の LLM を用いた自動実行と評価を行った。
タスクは、構文、セマンティック・リード、セマンティック・クリエーション、そして知識グラフの役割に沿った機能を評価する。
この新しいベンチマークタスクにより、GPT、Gemini、Claudeモデルの選択を評価した。
この結果から,SPARQL SELECTクエリの処理はLLMでは依然として困難であり,タスクの複雑さだけでなく,特定のLLMにも大きく依存していることが示唆された。
基本的な構文エラーの修正は、現在評価されているLLMのベストには何の問題も生じないように見えるが、意味論的に正しいSPARQL SELECTクエリを作成することは、いくつかのケースでは難しい。
関連論文リスト
- Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
本研究では,小言語モデルで処理される条件生成タスクとして,サブグラフ検索タスクをモデル化する。
2億2千万のパラメータからなる基本生成部分グラフ検索モデルでは,最先端モデルと比較して競合検索性能が向上した。
LLMリーダを接続した最大の3Bモデルは、WebQSPとCWQベンチマークの両方で、SOTAのエンドツーエンドパフォーマンスを新たに設定します。
論文 参考訳(メタデータ) (2024-10-08T15:22:36Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models [46.07900122810749]
大規模言語モデル(LLM)は、様々なアプリケーションで前例のない性能を達成したが、評価は依然として難しい。
既存のリレーショナルデータベースを利用することは、ベンチマークを構築する上で有望なアプローチである、と我々は主張する。
我々は,これらの整合性制約を用いて任意のデータベースをLLMベンチマークに変換するERBenchを提案する。
論文 参考訳(メタデータ) (2024-03-08T12:42:36Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
生命科学知識グラフを用いた質問応答のためのOpenLlama LLMの微調整戦略を評価する。
本稿では,既存のクエリのセットを知識グラフ上に拡張するためのエンドツーエンドデータ拡張手法を提案する。
また、意味のある変数名やインラインコメントなど、クエリにおける意味的な"キュー"の役割についても検討する。
論文 参考訳(メタデータ) (2024-02-07T07:24:01Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
大きな言語モデル(LLM)は、言語理解において強力な能力を示しており、この課題を解決するために使用することができる。
既存のメソッドは、当初、スキーマ固有の詳細を使わずにLLMを使用してロジックフォームのドラフトを生成することで、この課題を回避している。
そこで本研究では,LLMが文脈内学習を利用してスキーマを直接理解できる簡易なインコンテキスト理解(ICSU)手法を提案する。
論文 参考訳(メタデータ) (2023-10-22T04:19:17Z) - LibriSQA: A Novel Dataset and Framework for Spoken Question Answering with Large Language Models [21.95962189710859]
本稿では,LibriSQAデータセット上でSpoken Question Answering(SQA)タスクを実行するための軽量なエンドツーエンドフレームワークを提案する。
ASRをSQAフォーマットに書き換えることで、ASRタスクの処理におけるフレームワークの機能をさらに裏付ける。
我々の経験的発見は、多モーダル情報の整合と解釈に対するLLMの適性を高め、ユニバーサル多モーダルLLMの開発への道を開いた。
論文 参考訳(メタデータ) (2023-08-20T23:47:23Z) - SPBERT: Pre-training BERT on SPARQL Queries for End-to-end Question
Answering over Knowledge Graphs [1.1775939485654976]
SPBERTは、大規模なSPARQLクエリログを事前トレーニングしたTransformerベースの言語モデルである。
本研究では,SPBERTとエンコーダデコーパスアーキテクチャを知識ベースQAコーパスに適用する方法について検討する。
論文 参考訳(メタデータ) (2021-06-18T08:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。