DeepFM-Crispr: Prediction of CRISPR On-Target Effects via Deep Learning
- URL: http://arxiv.org/abs/2409.05938v1
- Date: Mon, 9 Sep 2024 17:33:54 GMT
- Title: DeepFM-Crispr: Prediction of CRISPR On-Target Effects via Deep Learning
- Authors: Condy Bao, Fuxiao Liu,
- Abstract summary: DeepFM-Crispr is a novel deep learning model developed to predict the on-target efficiency and evaluate the off-target effects of Cas13d.
It harnesses a large language model to generate comprehensive representations rich in evolutionary and structural data, thereby enhancing predictions of RNA secondary structures and overall sgRNA efficacy.
- Score: 0.24554686192257422
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Since the advent of CRISPR-Cas9, a groundbreaking gene-editing technology that enables precise genomic modifications via a short RNA guide sequence, there has been a marked increase in the accessibility and application of this technology across various fields. The success of CRISPR-Cas9 has spurred further investment and led to the discovery of additional CRISPR systems, including CRISPR-Cas13. Distinct from Cas9, which targets DNA, Cas13 targets RNA, offering unique advantages for gene modulation. We focus on Cas13d, a variant known for its collateral activity where it non-specifically cleaves adjacent RNA molecules upon activation, a feature critical to its function. We introduce DeepFM-Crispr, a novel deep learning model developed to predict the on-target efficiency and evaluate the off-target effects of Cas13d. This model harnesses a large language model to generate comprehensive representations rich in evolutionary and structural data, thereby enhancing predictions of RNA secondary structures and overall sgRNA efficacy. A transformer-based architecture processes these inputs to produce a predictive efficacy score. Comparative experiments show that DeepFM-Crispr not only surpasses traditional models but also outperforms recent state-of-the-art deep learning methods in terms of prediction accuracy and reliability.
Related papers
- Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction Based on Chemical Structure [53.76752789814785]
DumplingGNN is a hybrid Graph Neural Network architecture specifically designed for predicting ADC payload activity based on chemical structure.
We evaluate it on a comprehensive ADC payload dataset focusing on DNA Topoisomerase I inhibitors.
It demonstrates exceptional accuracy (91.48%), sensitivity (95.08%), and specificity (97.54%) on our specialized ADC payload dataset.
arXiv Detail & Related papers (2024-09-23T17:11:04Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding [12.996418312603284]
scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph) is a novel framework designed for efficient and accurate clustering of scRNA-seq data.
scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information.
(ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data.
arXiv Detail & Related papers (2024-04-09T09:46:17Z) - CRISPR: Ensemble Model [20.268713698436326]
We propose a novel ensemble learning method for sgRNA design that is accurate and generalizable.
Our results suggest that our method can be used to design sgRNAs with high sensitivity and specificity, even for new genes or cells.
arXiv Detail & Related papers (2024-03-05T14:55:14Z) - Machine Learning Modeling Of SiRNA Structure-Potency Relationship With
Applications Against Sars-Cov-2 Spike Gene [0.0]
Drug discovery process is lengthy and costly, taking nearly a decade to bring a new drug to the market.
Biotechnology, computational methods, and machine learning algorithms have the potential to revolutionize drug discovery, speeding up the process and improving patient outcomes.
The COVID-19 pandemic has further accelerated and deepened the recognition of the potential of these techniques, especially in the areas of drug repurposing and efficacy predictions.
arXiv Detail & Related papers (2024-01-18T23:00:34Z) - Scalable Deep Learning for RNA Secondary Structure Prediction [38.46798525594529]
We present the RNAformer, a lean deep learning model using axial attention and recycling in the latent space.
Our approach achieves state-of-the-art performance on the popular TS0 benchmark dataset.
We show experimentally that the RNAformer can learn a biophysical model of the RNA folding process.
arXiv Detail & Related papers (2023-07-14T12:54:56Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
We develop the first end-to-end deep learning approach, E2Efold-3D, to accurately perform the textitde novo RNA structure prediction.
Several novel components are proposed to overcome the data scarcity, such as a fully-differentiable end-to-end pipeline, secondary structure-assisted self-distillation, and parameter-efficient backbone formulation.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - Classification of Long Noncoding RNA Elements Using Deep Convolutional
Neural Networks and Siamese Networks [17.8181080354116]
This thesis proposes a new methodemploying deep convolutional neural networks (CNNs) to classifyncRNA sequences.
As a result, clas-sifying RNA sequences is converted to an image classificationproblem that can be efficiently solved by CNN-basedclassification models.
arXiv Detail & Related papers (2021-02-10T17:26:38Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.