論文の概要: A Comprehensive Comparison Between ANNs and KANs For Classifying EEG Alzheimer's Data
- arxiv url: http://arxiv.org/abs/2409.05989v1
- Date: Mon, 9 Sep 2024 18:31:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 20:02:25.036024
- Title: A Comprehensive Comparison Between ANNs and KANs For Classifying EEG Alzheimer's Data
- Title(参考訳): 脳波アルツハイマー病データの分類におけるANNとkanの総合的比較
- Authors: Akshay Sunkara, Sriram Sattiraju, Aakarshan Kumar, Zaryab Kanjiani, Himesh Anumala,
- Abstract要約: 人工ニューラルネットワーク(ANN)は、アルツハイマーの脳波データから予測するために使われてきたが、これらのモデルは時に偽陽性の診断を生成する。
本研究の目的は、ANNとKAN(Kolmogorov-Arnold Networks)の損失を、複数のタイプのエポック、学習率、ノード間で比較することである。
その結果、ANNは脳波信号からアルツハイマー病を予測するのにより正確であることが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Alzheimer's Disease is an incurable cognitive condition that affects thousands of people globally. While some diagnostic methods exist for Alzheimer's Disease, many of these methods cannot detect Alzheimer's in its earlier stages. Recently, researchers have explored the use of Electroencephalogram (EEG) technology for diagnosing Alzheimer's. EEG is a noninvasive method of recording the brain's electrical signals, and EEG data has shown distinct differences between patients with and without Alzheimer's. In the past, Artificial Neural Networks (ANNs) have been used to predict Alzheimer's from EEG data, but these models sometimes produce false positive diagnoses. This study aims to compare losses between ANNs and Kolmogorov-Arnold Networks (KANs) across multiple types of epochs, learning rates, and nodes. The results show that across these different parameters, ANNs are more accurate in predicting Alzheimer's Disease from EEG signals.
- Abstract(参考訳): アルツハイマー病 (Alzheimer's Disease) は、世界中の何千人もの人に影響を及ぼす不治の認知疾患である。
アルツハイマー病の診断法はいくつか存在するが、これらの方法の多くは初期の段階ではアルツハイマー病を検出できない。
近年、アルツハイマー病の診断に脳波(EEG)技術を用いることが研究されている。
脳波は脳の電気信号を記録する非侵襲的な方法であり、脳波データはアルツハイマー病患者と非アルツハイマー病患者の間で明確な差異を示している。
過去には、脳波データからアルツハイマー病を予測するために人工ニューラルネットワーク(ANN)が用いられてきたが、これらのモデルによって偽陽性の診断が生じることがある。
本研究の目的は、ANNとKAN(Kolmogorov-Arnold Networks)の損失を、複数のタイプのエポック、学習率、ノード間で比較することである。
その結果、ANNは脳波信号からアルツハイマー病を予測するのにより正確であることが判明した。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Introducing an ensemble method for the early detection of Alzheimer's disease through the analysis of PET scan images [0.8192907805418583]
本研究は、アルツハイマー病を制御正常(CN)、進行性軽度認知障害(pMCI)、安定性軽度認知障害(sMCI)、アルツハイマー病(AD)の4つのグループに分類する難しい課題について考察する。
いくつかのディープラーニングモデルと伝統的な機械学習モデルがアルツハイマー病の検出に使われている。
その結果、深層学習モデルを用いてMCI患者間の差異を判断すると、全体の平均精度は93.13%、AUCは94.4%となることがわかった。
論文 参考訳(メタデータ) (2024-03-17T16:12:50Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - Characterizing TMS-EEG perturbation indexes using signal energy: initial
study on Alzheimer's Disease classification [48.42347515853289]
経頭蓋磁気刺激(TMS)と脳波記録(TMS-EEG)を組み合わせることで、脳、特にアルツハイマー病(AD)の研究に大きな可能性を示す。
本研究では,脳機能の変化を反映した電位指標として,脳波信号のTMS誘発摂動の持続時間を自動的に決定する手法を提案する。
論文 参考訳(メタデータ) (2022-04-29T19:27:06Z) - Predicting Alzheimer's Disease Using 3DMgNet [2.97983501982132]
3DMgNetはアルツハイマー病(AD)を診断するためのマルチグリッドと畳み込みニューラルネットワークの統合フレームワークである
このモデルはADとNCの分類で92.133%の精度を達成し、モデルのパラメータを大幅に削減した。
論文 参考訳(メタデータ) (2022-01-12T09:08:08Z) - Investigating Conversion from Mild Cognitive Impairment to Alzheimer's
Disease using Latent Space Manipulation [0.23931689873603598]
本稿では、MCIからアルツハイマー病への変換の識別子である変数を発見するためのディープラーニングフレームワークを提案する。
特に、MCIおよびアルツハイマー病患者で訓練された変分自己エンコーダネットワークの潜時空間を操作し、重要な特性を得る。
生成型デコーダとアルツハイマー病の診断に繋がる寸法を利用して、データセット中のMCI患者から合成認知症患者を生成する。
論文 参考訳(メタデータ) (2021-11-16T21:48:09Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - A Pilot Study on Visually-Stimulated Cognitive Tasks for EEG-Based
Dementia Recognition Using Frequency and Time Features [3.9728427877905568]
本研究の目的は、健常者(NC)、軽度認知障害(MCI)、認知症(DEM)の3群における脳波(EEG)信号の差を調べることである。
4つの視覚刺激課題の脳波信号を用いた機械学習による認知症診断のパイロット研究を開発した。
論文 参考訳(メタデータ) (2021-03-05T18:13:23Z) - Preclinical Stage Alzheimer's Disease Detection Using Magnetic Resonance
Image Scans [10.120835953459247]
アルツハイマー病(英語: Alzheimer's disease)は、高齢者に老化を伴わない病気の一つ。
早期にアルツハイマー病を検出することが重要である。
論文 参考訳(メタデータ) (2020-11-28T14:25:30Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。