Enhanced Generative Data Augmentation for Semantic Segmentation via Stronger Guidance
- URL: http://arxiv.org/abs/2409.06002v3
- Date: Mon, 23 Dec 2024 09:57:21 GMT
- Title: Enhanced Generative Data Augmentation for Semantic Segmentation via Stronger Guidance
- Authors: Quang-Huy Che, Duc-Tri Le, Bich-Nga Pham, Duc-Khai Lam, Vinh-Tiep Nguyen,
- Abstract summary: We introduce an effective data augmentation pipeline for semantic segmentation using Controllable Diffusion model.<n>Our proposed method includes efficient prompt generation using textitClass-Prompt Appending and textitVisual Prior Blending.<n>Our pipeline demonstrates its effectiveness in generating high-quality synthetic images for semantic segmentation.
- Score: 1.1027204173383738
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Data augmentation is crucial for pixel-wise annotation tasks like semantic segmentation, where labeling requires significant effort and intensive labor. Traditional methods, involving simple transformations such as rotations and flips, create new images but often lack diversity along key semantic dimensions and fail to alter high-level semantic properties. To address this issue, generative models have emerged as an effective solution for augmenting data by generating synthetic images. Controllable Generative models offer data augmentation methods for semantic segmentation tasks by using prompts and visual references from the original image. However, these models face challenges in generating synthetic images that accurately reflect the content and structure of the original image due to difficulties in creating effective prompts and visual references. In this work, we introduce an effective data augmentation pipeline for semantic segmentation using Controllable Diffusion model. Our proposed method includes efficient prompt generation using \textit{Class-Prompt Appending} and \textit{Visual Prior Blending} to enhance attention to labeled classes in real images, allowing the pipeline to generate a precise number of augmented images while preserving the structure of segmentation-labeled classes. In addition, we implement a \textit{class balancing algorithm} to ensure a balanced training dataset when merging the synthetic and original images. Evaluation on PASCAL VOC datasets, our pipeline demonstrates its effectiveness in generating high-quality synthetic images for semantic segmentation. Our code is available at \href{https://github.com/chequanghuy/Enhanced-Generative-Data-Augmentation-for-Semantic-Segmentation-via-S tronger-Guidance}{this https URL}.
Related papers
- Erase, then Redraw: A Novel Data Augmentation Approach for Free Space Detection Using Diffusion Model [5.57325257338134]
Traditional data augmentation methods cannot alter high-level semantic attributes.
We propose a text-to-image diffusion model to parameterize image-to-image transformations.
We achieve this goal by erasing instances of real objects from the original dataset and generating new instances with similar semantics in the erased regions.
arXiv Detail & Related papers (2024-09-30T10:21:54Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - FuseNet: Self-Supervised Dual-Path Network for Medical Image
Segmentation [3.485615723221064]
FuseNet is a dual-stream framework for self-supervised semantic segmentation.
Cross-modal fusion technique extends the principles of CLIP by replacing textual data with augmented images.
experiments on skin lesion and lung segmentation datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-11-22T00:03:16Z) - Adapt Anything: Tailor Any Image Classifiers across Domains And
Categories Using Text-to-Image Diffusion Models [82.95591765009105]
We aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories.
We utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts.
arXiv Detail & Related papers (2023-10-25T11:58:14Z) - Dataset Diffusion: Diffusion-based Synthetic Dataset Generation for
Pixel-Level Semantic Segmentation [6.82236459614491]
We propose a novel method for generating pixel-level semantic segmentation labels using the text-to-image generative model Stable Diffusion.
By utilizing the text prompts, cross-attention, and self-attention of SD, we introduce three new techniques: class-prompt appending, class-prompt cross-attention, and self-attention exponentiation.
These techniques enable us to generate segmentation maps corresponding to synthetic images.
arXiv Detail & Related papers (2023-09-25T17:19:26Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - MixReorg: Cross-Modal Mixed Patch Reorganization is a Good Mask Learner
for Open-World Semantic Segmentation [110.09800389100599]
We propose MixReorg, a novel and straightforward pre-training paradigm for semantic segmentation.
Our approach involves generating fine-grained patch-text pairs data by mixing image patches while preserving the correspondence between patches and text.
With MixReorg as a mask learner, conventional text-supervised semantic segmentation models can achieve highly generalizable pixel-semantic alignment ability.
arXiv Detail & Related papers (2023-08-09T09:35:16Z) - Few-shot Semantic Image Synthesis with Class Affinity Transfer [23.471210664024067]
We propose a transfer method that leverages a model trained on a large source dataset to improve the learning ability on small target datasets.
The class affinity matrix is introduced as a first layer to the source model to make it compatible with the target label maps.
We apply our approach to GAN-based and diffusion-based architectures for semantic synthesis.
arXiv Detail & Related papers (2023-04-05T09:24:45Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models.
Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples.
We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
arXiv Detail & Related papers (2023-02-07T20:42:28Z) - HandsOff: Labeled Dataset Generation With No Additional Human
Annotations [13.11411442720668]
We introduce the HandsOff framework, a technique capable of producing an unlimited number of synthetic images and corresponding labels.
Our framework avoids the practical drawbacks of prior work by unifying the field of GAN inversion with dataset generation.
We generate datasets with rich pixel-wise labels in multiple challenging domains such as faces, cars, full-body human poses, and urban driving scenes.
arXiv Detail & Related papers (2022-12-24T03:37:02Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
In medical image segmentation, supervised deep networks' success comes at the cost of requiring abundant labeled data.
We propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs.
Our work's central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy.
arXiv Detail & Related papers (2021-10-05T15:28:42Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - Half-Real Half-Fake Distillation for Class-Incremental Semantic
Segmentation [84.1985497426083]
convolutional neural networks are ill-equipped for incremental learning.
New classes are available but the initial training data is not retained.
We try to address this issue by "inverting" the trained segmentation network to synthesize input images starting from random noise.
arXiv Detail & Related papers (2021-04-02T03:47:16Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Synthetic Convolutional Features for Improved Semantic Segmentation [139.5772851285601]
We suggest to generate intermediate convolutional features and propose the first synthesis approach that is catered to such intermediate convolutional features.
This allows us to generate new features from label masks and include them successfully into the training procedure.
Experimental results and analysis on two challenging datasets Cityscapes and ADE20K show that our generated feature improves performance on segmentation tasks.
arXiv Detail & Related papers (2020-09-18T14:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.