Analyzing Tumors by Synthesis
- URL: http://arxiv.org/abs/2409.06035v1
- Date: Mon, 9 Sep 2024 19:51:44 GMT
- Title: Analyzing Tumors by Synthesis
- Authors: Qi Chen, Yuxiang Lai, Xiaoxi Chen, Qixin Hu, Alan Yuille, Zongwei Zhou,
- Abstract summary: Tumor synthesis generates numerous tumor examples in medical images, aiding AI training for tumor detection and segmentation.
This chapter reviews AI development on real and synthetic data.
Case studies show that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data.
- Score: 11.942932753828854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided tumor detection has shown great potential in enhancing the interpretation of over 80 million CT scans performed annually in the United States. However, challenges arise due to the rarity of CT scans with tumors, especially early-stage tumors. Developing AI with real tumor data faces issues of scarcity, annotation difficulty, and low prevalence. Tumor synthesis addresses these challenges by generating numerous tumor examples in medical images, aiding AI training for tumor detection and segmentation. Successful synthesis requires realistic and generalizable synthetic tumors across various organs. This chapter reviews AI development on real and synthetic data and summarizes two key trends in synthetic data for cancer imaging research: modeling-based and learning-based approaches. Modeling-based methods, like Pixel2Cancer, simulate tumor development over time using generic rules, while learning-based methods, like DiffTumor, learn from a few annotated examples in one organ to generate synthetic tumors in others. Reader studies with expert radiologists show that synthetic tumors can be convincingly realistic. We also present case studies in the liver, pancreas, and kidneys reveal that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data. Tumor synthesis holds significant promise for expanding datasets, enhancing AI reliability, improving tumor detection performance, and preserving patient privacy.
Related papers
- FreeTumor: Advance Tumor Segmentation via Large-Scale Tumor Synthesis [7.064154713491736]
FreeTumor is a robust solution for robust tumor synthesis and segmentation.
It uses adversarial training strategy to leverage large-scale and diversified unlabeled data in synthesis training.
In FreeTumor, we investigate the data scaling law in tumor segmentation by scaling up the dataset to 11k cases.
arXiv Detail & Related papers (2024-06-03T12:27:29Z) - From Pixel to Cancer: Cellular Automata in Computed Tomography [12.524228287083888]
Tumor synthesis seeks to create artificial tumors in medical images.
This paper establishes a set of generic rules to simulate tumor development.
We integrate the tumor state into the original computed tomography (CT) images to generate synthetic tumors across different organs.
arXiv Detail & Related papers (2024-03-11T06:46:31Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Early Detection and Localization of Pancreatic Cancer by Label-Free
Tumor Synthesis [11.86190788916592]
Early detection and localization of pancreatic cancer can increase the 5-year survival rate for patients from 8.5% to 20%.
Training AI models require a vast number of annotated examples, but the availability of CT scans obtaining early-stage tumors is constrained.
We develop a tumor synthesis method that can synthesize enormous examples of small pancreatic tumors in the healthy pancreas without the need for manual annotation.
arXiv Detail & Related papers (2023-08-06T03:37:34Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Label-Free Liver Tumor Segmentation [10.851067782021902]
We show that AI models can accurately segment liver tumors without the need for manual annotation by using synthetic tumors in CT scans.
Our synthetic tumors have two intriguing advantages: realistic in shape and texture, which even medical professionals can confuse with real tumors.
Our synthetic tumors can automatically generate many examples of small (or even tiny) synthetic tumors.
arXiv Detail & Related papers (2023-03-27T01:22:12Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice.
Most medical AI systems are built to focus on single organs with a narrow list of a few diseases.
CancerUniT is a query-based Mask Transformer model with the output of multi-tumor prediction.
arXiv Detail & Related papers (2023-01-28T20:09:34Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.