FreeTumor: Large-Scale Generative Tumor Synthesis in Computed Tomography Images for Improving Tumor Recognition
- URL: http://arxiv.org/abs/2502.18519v1
- Date: Sun, 23 Feb 2025 07:00:09 GMT
- Title: FreeTumor: Large-Scale Generative Tumor Synthesis in Computed Tomography Images for Improving Tumor Recognition
- Authors: Linshan Wu, Jiaxin Zhuang, Yanning Zhou, Sunan He, Jiabo Ma, Luyang Luo, Xi Wang, Xuefeng Ni, Xiaoling Zhong, Mingxiang Wu, Yinghua Zhao, Xiaohui Duan, Varut Vardhanabhuti, Pranav Rajpurkar, Hao Chen,
- Abstract summary: FreeTumor is an innovative Generative AI (GAI) framework to enable large-scale tumor synthesis for mitigating data scarcity.<n>We create the largest training dataset for tumor synthesis and recognition by curating 161,310 publicly available Computed Tomography (CT) volumes.<n>To validate the fidelity of synthetic tumors, we engaged 13 board-certified radiologists in a Visual Turing Test to discern between synthetic and real tumors.
- Score: 11.984311048958318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tumor is a leading cause of death worldwide, with an estimated 10 million deaths attributed to tumor-related diseases every year. AI-driven tumor recognition unlocks new possibilities for more precise and intelligent tumor screening and diagnosis. However, the progress is heavily hampered by the scarcity of annotated datasets, which demands extensive annotation efforts by radiologists. To tackle this challenge, we introduce FreeTumor, an innovative Generative AI (GAI) framework to enable large-scale tumor synthesis for mitigating data scarcity. Specifically, FreeTumor effectively leverages a combination of limited labeled data and large-scale unlabeled data for tumor synthesis training. Unleashing the power of large-scale data, FreeTumor is capable of synthesizing a large number of realistic tumors on images for augmenting training datasets. To this end, we create the largest training dataset for tumor synthesis and recognition by curating 161,310 publicly available Computed Tomography (CT) volumes from 33 sources, with only 2.3% containing annotated tumors. To validate the fidelity of synthetic tumors, we engaged 13 board-certified radiologists in a Visual Turing Test to discern between synthetic and real tumors. Rigorous clinician evaluation validates the high quality of our synthetic tumors, as they achieved only 51.1% sensitivity and 60.8% accuracy in distinguishing our synthetic tumors from real ones. Through high-quality tumor synthesis, FreeTumor scales up the recognition training datasets by over 40 times, showcasing a notable superiority over state-of-the-art AI methods including various synthesis methods and foundation models. These findings indicate promising prospects of FreeTumor in clinical applications, potentially advancing tumor treatments and improving the survival rates of patients.
Related papers
- MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
We propose MAST-Pro, a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation.
Specifically, text and anatomical prompts provide domain-specific priors guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning.
Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average improvement while reducing trainable parameters by 91.04%, without compromising accuracy.
arXiv Detail & Related papers (2025-03-18T15:39:44Z) - Text-Driven Tumor Synthesis [28.654516965292444]
Tumor synthesis can generate examples that AI often misses or over-detects.<n>Existing synthesis methods lack controllability over specific tumor characteristics.<n>We propose a new text-driven tumor synthesis approach, called TextoMorph.
arXiv Detail & Related papers (2024-12-24T18:43:09Z) - Analyzing Tumors by Synthesis [11.942932753828854]
Tumor synthesis generates numerous tumor examples in medical images, aiding AI training for tumor detection and segmentation.
This chapter reviews AI development on real and synthetic data.
Case studies show that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data.
arXiv Detail & Related papers (2024-09-09T19:51:44Z) - FreeTumor: Advance Tumor Segmentation via Large-Scale Tumor Synthesis [7.064154713491736]
FreeTumor is a robust solution for robust tumor synthesis and segmentation.
It uses adversarial training strategy to leverage large-scale and diversified unlabeled data in synthesis training.
In FreeTumor, we investigate the data scaling law in tumor segmentation by scaling up the dataset to 11k cases.
arXiv Detail & Related papers (2024-06-03T12:27:29Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - From Pixel to Cancer: Cellular Automata in Computed Tomography [12.524228287083888]
Tumor synthesis seeks to create artificial tumors in medical images.
This paper establishes a set of generic rules to simulate tumor development.
We integrate the tumor state into the original computed tomography (CT) images to generate synthetic tumors across different organs.
arXiv Detail & Related papers (2024-03-11T06:46:31Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Early Detection and Localization of Pancreatic Cancer by Label-Free
Tumor Synthesis [11.86190788916592]
Early detection and localization of pancreatic cancer can increase the 5-year survival rate for patients from 8.5% to 20%.
Training AI models require a vast number of annotated examples, but the availability of CT scans obtaining early-stage tumors is constrained.
We develop a tumor synthesis method that can synthesize enormous examples of small pancreatic tumors in the healthy pancreas without the need for manual annotation.
arXiv Detail & Related papers (2023-08-06T03:37:34Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.