From Pixel to Cancer: Cellular Automata in Computed Tomography
- URL: http://arxiv.org/abs/2403.06459v2
- Date: Fri, 5 Jul 2024 17:02:33 GMT
- Title: From Pixel to Cancer: Cellular Automata in Computed Tomography
- Authors: Yuxiang Lai, Xiaoxi Chen, Angtian Wang, Alan Yuille, Zongwei Zhou,
- Abstract summary: Tumor synthesis seeks to create artificial tumors in medical images.
This paper establishes a set of generic rules to simulate tumor development.
We integrate the tumor state into the original computed tomography (CT) images to generate synthetic tumors across different organs.
- Score: 12.524228287083888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI for cancer detection encounters the bottleneck of data scarcity, annotation difficulty, and low prevalence of early tumors. Tumor synthesis seeks to create artificial tumors in medical images, which can greatly diversify the data and annotations for AI training. However, current tumor synthesis approaches are not applicable across different organs due to their need for specific expertise and design. This paper establishes a set of generic rules to simulate tumor development. Each cell (pixel) is initially assigned a state between zero and ten to represent the tumor population, and a tumor can be developed based on three rules to describe the process of growth, invasion, and death. We apply these three generic rules to simulate tumor development--from pixel to cancer--using cellular automata. We then integrate the tumor state into the original computed tomography (CT) images to generate synthetic tumors across different organs. This tumor synthesis approach allows for sampling tumors at multiple stages and analyzing tumor-organ interaction. Clinically, a reader study involving three expert radiologists reveals that the synthetic tumors and their developing trajectories are convincingly realistic. Technically, we analyze and simulate tumor development at various stages using 9,262 raw, unlabeled CT images sourced from 68 hospitals worldwide. The performance in segmenting tumors in the liver, pancreas, and kidneys exceeds prevailing literature benchmarks, underlining the immense potential of tumor synthesis, especially for earlier cancer detection. The code and models are available at https://github.com/MrGiovanni/Pixel2Cancer
Related papers
- Analyzing Tumors by Synthesis [11.942932753828854]
Tumor synthesis generates numerous tumor examples in medical images, aiding AI training for tumor detection and segmentation.
This chapter reviews AI development on real and synthetic data.
Case studies show that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data.
arXiv Detail & Related papers (2024-09-09T19:51:44Z) - FreeTumor: Advance Tumor Segmentation via Large-Scale Tumor Synthesis [7.064154713491736]
FreeTumor is a robust solution for robust tumor synthesis and segmentation.
It uses adversarial training strategy to leverage large-scale and diversified unlabeled data in synthesis training.
In FreeTumor, we investigate the data scaling law in tumor segmentation by scaling up the dataset to 11k cases.
arXiv Detail & Related papers (2024-06-03T12:27:29Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Early Detection and Localization of Pancreatic Cancer by Label-Free
Tumor Synthesis [11.86190788916592]
Early detection and localization of pancreatic cancer can increase the 5-year survival rate for patients from 8.5% to 20%.
Training AI models require a vast number of annotated examples, but the availability of CT scans obtaining early-stage tumors is constrained.
We develop a tumor synthesis method that can synthesize enormous examples of small pancreatic tumors in the healthy pancreas without the need for manual annotation.
arXiv Detail & Related papers (2023-08-06T03:37:34Z) - Label-Free Liver Tumor Segmentation [10.851067782021902]
We show that AI models can accurately segment liver tumors without the need for manual annotation by using synthetic tumors in CT scans.
Our synthetic tumors have two intriguing advantages: realistic in shape and texture, which even medical professionals can confuse with real tumors.
Our synthetic tumors can automatically generate many examples of small (or even tiny) synthetic tumors.
arXiv Detail & Related papers (2023-03-27T01:22:12Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice.
Most medical AI systems are built to focus on single organs with a narrow list of a few diseases.
CancerUniT is a query-based Mask Transformer model with the output of multi-tumor prediction.
arXiv Detail & Related papers (2023-01-28T20:09:34Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
preoperative discrimination between T2 and T3 stages is arguably both the most challenging and clinically significant task for rectal cancer treatment.
We present a volumetric convolutional neural network to accurately discriminate T2 from T3 stage rectal cancer with rectal MR volumes.
arXiv Detail & Related papers (2022-09-13T07:10:14Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.