Early Detection and Localization of Pancreatic Cancer by Label-Free
Tumor Synthesis
- URL: http://arxiv.org/abs/2308.03008v1
- Date: Sun, 6 Aug 2023 03:37:34 GMT
- Title: Early Detection and Localization of Pancreatic Cancer by Label-Free
Tumor Synthesis
- Authors: Bowen Li, Yu-Cheng Chou, Shuwen Sun, Hualin Qiao, Alan Yuille, Zongwei
Zhou
- Abstract summary: Early detection and localization of pancreatic cancer can increase the 5-year survival rate for patients from 8.5% to 20%.
Training AI models require a vast number of annotated examples, but the availability of CT scans obtaining early-stage tumors is constrained.
We develop a tumor synthesis method that can synthesize enormous examples of small pancreatic tumors in the healthy pancreas without the need for manual annotation.
- Score: 11.86190788916592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection and localization of pancreatic cancer can increase the 5-year
survival rate for patients from 8.5% to 20%. Artificial intelligence (AI) can
potentially assist radiologists in detecting pancreatic tumors at an early
stage. Training AI models require a vast number of annotated examples, but the
availability of CT scans obtaining early-stage tumors is constrained. This is
because early-stage tumors may not cause any symptoms, which can delay
detection, and the tumors are relatively small and may be almost invisible to
human eyes on CT scans. To address this issue, we develop a tumor synthesis
method that can synthesize enormous examples of small pancreatic tumors in the
healthy pancreas without the need for manual annotation. Our experiments
demonstrate that the overall detection rate of pancreatic tumors, measured by
Sensitivity and Specificity, achieved by AI trained on synthetic tumors is
comparable to that of real tumors. More importantly, our method shows a much
higher detection rate for small tumors. We further investigate the per-voxel
segmentation performance of pancreatic tumors if AI is trained on a combination
of CT scans with synthetic tumors and CT scans with annotated large tumors at
an advanced stage. Finally, we show that synthetic tumors improve AI
generalizability in tumor detection and localization when processing CT scans
from different hospitals. Overall, our proposed tumor synthesis method has
immense potential to improve the early detection of pancreatic cancer, leading
to better patient outcomes.
Related papers
- Analyzing Tumors by Synthesis [11.942932753828854]
Tumor synthesis generates numerous tumor examples in medical images, aiding AI training for tumor detection and segmentation.
This chapter reviews AI development on real and synthetic data.
Case studies show that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data.
arXiv Detail & Related papers (2024-09-09T19:51:44Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - From Pixel to Cancer: Cellular Automata in Computed Tomography [12.524228287083888]
Tumor synthesis seeks to create artificial tumors in medical images.
This paper establishes a set of generic rules to simulate tumor development.
We integrate the tumor state into the original computed tomography (CT) images to generate synthetic tumors across different organs.
arXiv Detail & Related papers (2024-03-11T06:46:31Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Label-Free Liver Tumor Segmentation [10.851067782021902]
We show that AI models can accurately segment liver tumors without the need for manual annotation by using synthetic tumors in CT scans.
Our synthetic tumors have two intriguing advantages: realistic in shape and texture, which even medical professionals can confuse with real tumors.
Our synthetic tumors can automatically generate many examples of small (or even tiny) synthetic tumors.
arXiv Detail & Related papers (2023-03-27T01:22:12Z) - CancerUniT: Towards a Single Unified Model for Effective Detection,
Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection
of CT Scans [45.83431075462771]
Human readers or radiologists routinely perform full-body multi-organ multi-disease detection and diagnosis in clinical practice.
Most medical AI systems are built to focus on single organs with a narrow list of a few diseases.
CancerUniT is a query-based Mask Transformer model with the output of multi-tumor prediction.
arXiv Detail & Related papers (2023-01-28T20:09:34Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.