論文の概要: DECOLLAGE: 3D Detailization by Controllable, Localized, and Learned Geometry Enhancement
- arxiv url: http://arxiv.org/abs/2409.06129v1
- Date: Tue, 10 Sep 2024 00:51:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 19:30:38.975929
- Title: DECOLLAGE: 3D Detailization by Controllable, Localized, and Learned Geometry Enhancement
- Title(参考訳): DECOLLAGE: 制御可能、局所化、学習幾何学の強化による3次元詳細化
- Authors: Qimin Chen, Zhiqin Chen, Vladimir G. Kim, Noam Aigerman, Hao Zhang, Siddhartha Chaudhuri,
- Abstract要約: エンドユーザーが機械学習を用いて3次元形状を洗練・詳細化できる3Dモデリング手法を提案する。
詳細をローカライズする能力は、新しいインタラクティブな創造性と応用を可能にする。
- 参考スコア(独自算出の注目度): 38.719572669042925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a 3D modeling method which enables end-users to refine or detailize 3D shapes using machine learning, expanding the capabilities of AI-assisted 3D content creation. Given a coarse voxel shape (e.g., one produced with a simple box extrusion tool or via generative modeling), a user can directly "paint" desired target styles representing compelling geometric details, from input exemplar shapes, over different regions of the coarse shape. These regions are then up-sampled into high-resolution geometries which adhere with the painted styles. To achieve such controllable and localized 3D detailization, we build on top of a Pyramid GAN by making it masking-aware. We devise novel structural losses and priors to ensure that our method preserves both desired coarse structures and fine-grained features even if the painted styles are borrowed from diverse sources, e.g., different semantic parts and even different shape categories. Through extensive experiments, we show that our ability to localize details enables novel interactive creative workflows and applications. Our experiments further demonstrate that in comparison to prior techniques built on global detailization, our method generates structure-preserving, high-resolution stylized geometries with more coherent shape details and style transitions.
- Abstract(参考訳): エンドユーザーが機械学習を用いて3D形状を洗練または詳細化し、AI支援型3Dコンテンツ作成の能力を拡大する3Dモデリング手法を提案する。
ユーザは、粗いボクセル形状(例えば、単純な箱押出工具または生成モデルにより生成されるもの)を与えられた場合、入力外形から粗い形状の異なる領域にわたって、魅力的な幾何学的詳細を表す所望のターゲットスタイルを直接「塗装」することができる。
これらの領域は、高解像度のジオメトリーにアップサンプリングされ、塗装様式に固執する。
このような制御可能で局所的な3D明細化を実現するために、我々は、ピラミッドGANの上にマスクを意識して構築する。
そこで我々は,本手法が望まれる粗い構造と細粒度の特徴の両方を,例えば,異なる意味的部分,さらには異なる形状のカテゴリから借用したとしても,新たな構造的損失と先行性を考案した。
広範な実験を通して、詳細をローカライズする能力は、新しいインタラクティブなワークフローやアプリケーションを可能にすることを示す。
さらに,グローバルな細部化に基づく先行技術と比較して,より整合的な形状の細部とスタイル遷移を有する構造保存型,高解像度なスタイライズされたジオメトリを生成することを実証した。
関連論文リスト
- DetailGen3D: Generative 3D Geometry Enhancement via Data-Dependent Flow [44.72037991063735]
DetailGen3Dは、生成された3D形状を強化するために特別に設計されたジェネレーティブなアプローチである。
我々の重要な洞察は、潜在空間におけるデータ依存フローを通して、粗大から細小への変換を直接モデル化することである。
改質時に正確な空間対応を確保するためのトークンマッチング戦略を導入する。
論文 参考訳(メタデータ) (2024-11-25T17:08:17Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
本稿では,高精細な幾何学と高品質なテクスチャの創出に優れたテキスト・ツー・3D生成モデルであるDreamPolishを紹介する。
幾何構成フェーズでは, 合成過程の安定性を高めるために, 複数のニューラル表現を利用する。
テクスチャ生成フェーズでは、そのような領域に向けて神経表現を導くために、新しいスコア蒸留、すなわちドメインスコア蒸留(DSD)を導入する。
論文 参考訳(メタデータ) (2024-11-03T15:15:01Z) - CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner [34.78919665494048]
CraftsManは、非常に多様な形状、通常のメッシュトポロジ、詳細な表面を持つ高忠実な3Dジオメトリを生成することができる。
本手法は,従来の方法に比べて高品質な3Dアセットの製作に有効である。
論文 参考訳(メタデータ) (2024-05-23T18:30:12Z) - ShaDDR: Interactive Example-Based Geometry and Texture Generation via 3D
Shape Detailization and Differentiable Rendering [24.622120688131616]
ShaDDRは、高分解能なテクスチャ化された3D形状を生成するサンプルベースのディープ生成ニューラルネットワークである。
本手法は,マルチレゾリューションボクセルアップサンプリングによる幾何学の精密化と,ボクセル表面のテクスチャの生成を学習する。
生成された形状は、入力された粗いボクセルモデルの全体構造を保存する。
論文 参考訳(メタデータ) (2023-06-08T02:35:30Z) - DreamStone: Image as Stepping Stone for Text-Guided 3D Shape Generation [105.97545053660619]
テキスト誘導型3次元形状生成手法DreamStoneを提案する。
画像を使ってテキストと形状のギャップを埋め、ペアのテキストと3Dデータを必要とせずに3Dの形状を生成する。
我々のアプローチは汎用的で柔軟でスケーラブルであり、様々なSVRモデルと容易に統合でき、生成空間を拡大し、生成忠実性を向上させることができる。
論文 参考訳(メタデータ) (2023-03-24T03:56:23Z) - 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style
Variations [81.45521258652734]
本稿では,3次元オブジェクトの幾何学的・テクスチャ的バリエーションを多用する手法を提案する。
提案手法は,多くの新しいスタイルの形状を作成でき,その結果,無駄な3Dコンテンツ作成とスタイルウェアデータ拡張を実現している。
論文 参考訳(メタデータ) (2021-08-30T02:28:31Z) - SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation [50.53931728235875]
点雲の形で3次元形状を直接合成するための新しい教師なし球誘導生成モデルSP-GANを提案する。
既存のモデルと比較して、SP-GANは多種多様な高品質な形状を詳細に合成することができる。
論文 参考訳(メタデータ) (2021-08-10T06:49:45Z) - DECOR-GAN: 3D Shape Detailization by Conditional Refinement [50.8801457082181]
本稿では,3次元形状詳細化のための深層生成ネットワークについて紹介する。
提案手法は, 粗い形状を様々な形状の細かな形状に洗練することができることを示す。
論文 参考訳(メタデータ) (2020-12-16T18:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。