DiPT: Enhancing LLM reasoning through diversified perspective-taking
- URL: http://arxiv.org/abs/2409.06241v1
- Date: Tue, 10 Sep 2024 06:17:27 GMT
- Title: DiPT: Enhancing LLM reasoning through diversified perspective-taking
- Authors: Hoang Anh Just, Mahavir Dabas, Lifu Huang, Ming Jin, Ruoxi Jia,
- Abstract summary: Existing work on improving language model reasoning typically explores a single solution path.
Inspired by perspective-taking in social studies, this paper introduces DiPT, a novel approach.
It allows the model to gain a deeper understanding of the problem's context and identify the most effective solution path.
- Score: 27.443341091299168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing work on improving language model reasoning typically explores a single solution path, which can be prone to errors. Inspired by perspective-taking in social studies, this paper introduces DiPT, a novel approach that complements current reasoning methods by explicitly incorporating diversified viewpoints. This approach allows the model to gain a deeper understanding of the problem's context and identify the most effective solution path during the inference stage. Additionally, it provides a general data-centric AI recipe for augmenting existing data to improve their quality for fine-tuning. Our empirical results demonstrate that DiPT can be flexibly integrated into existing methods that focus on a single reasoning approach, enhancing their reasoning performance and stability when presented with paraphrased problems. Furthermore, we illustrate improved context understanding by maintaining the model's safe outputs against "jailbreaking" prompts intentionally designed to bypass safeguards built into deployed models. Lastly, we show that fine-tuning with data enriched with diverse perspectives can boost the reasoning capabilities of the model compared to fine-tuning with raw data alone.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
We introduce Alignment from Demonstrations (AfD), a novel approach leveraging high-quality demonstration data to overcome these challenges.
We formalize AfD within a sequential decision-making framework, highlighting its unique challenge of missing reward signals.
Practically, we propose a computationally efficient algorithm that extrapolates over a tailored reward model for AfD.
arXiv Detail & Related papers (2024-05-24T15:13:53Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Modeling Uncertainty in Personalized Emotion Prediction with Normalizing
Flows [6.32047610997385]
This work proposes a novel approach to capture the uncertainty of the forecast using conditional Normalizing Flows.
We validated our method on three challenging, subjective NLP tasks, including emotion recognition and hate speech.
The information brought by the developed methods makes it possible to build hybrid models whose effectiveness surpasses classic solutions.
arXiv Detail & Related papers (2023-12-10T23:21:41Z) - Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets [46.19529338280716]
Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations.
We introduce a methodology designed to examine how input perturbations affect language models across various scales.
We present three distinct fine-tuning strategies to address robustness against multiple perturbations.
arXiv Detail & Related papers (2023-11-15T02:59:10Z) - Shattering the Agent-Environment Interface for Fine-Tuning Inclusive
Language Models [24.107358120517336]
In this work, we adopt a novel perspective wherein a pre-trained language model is itself simultaneously a policy, reward function, and transition function.
An immediate consequence of this is that reward learning and language model fine-tuning can be performed jointly and directly, without requiring any further downstream policy optimization.
arXiv Detail & Related papers (2023-05-19T06:21:15Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
We propose noise entropy regularisation (NoiER) as an efficient learning paradigm that solves the problem without auxiliary models and additional data.
The proposed approach improved traditional OOD detection evaluation metrics by 55% on average compared to the original fine-tuned models.
arXiv Detail & Related papers (2021-08-29T06:58:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.