EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification
- URL: http://arxiv.org/abs/2409.06290v1
- Date: Tue, 10 Sep 2024 07:42:47 GMT
- Title: EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification
- Authors: Suorong Yang, Furao Shen, Jian Zhao,
- Abstract summary: We propose EntAugment, a tuning-free and adaptive DA framework.
It dynamically assesses and adjusts the augmentation magnitudes for each sample during training.
We also introduce a novel entropy regularization term, EntLoss, which complements the EntAugment approach.
- Score: 10.334396596691048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation (DA) has been widely used to improve the generalization of deep neural networks. While existing DA methods have proven effective, they often rely on augmentation operations with random magnitudes to each sample. However, this approach can inadvertently introduce noise, induce distribution shifts, and increase the risk of overfitting. In this paper, we propose EntAugment, a tuning-free and adaptive DA framework. Unlike previous work, EntAugment dynamically assesses and adjusts the augmentation magnitudes for each sample during training, leveraging insights into both the inherent complexities of training samples and the evolving status of deep models. Specifically, in EntAugment, the magnitudes are determined by the information entropy derived from the probability distribution obtained by applying the softmax function to the model's output. In addition, to further enhance the efficacy of EntAugment, we introduce a novel entropy regularization term, EntLoss, which complements the EntAugment approach. Theoretical analysis further demonstrates that EntLoss, compared to traditional cross-entropy loss, achieves closer alignment between the model distributions and underlying dataset distributions. Moreover, EntAugment and EntLoss can be utilized separately or jointly. We conduct extensive experiments across multiple image classification tasks and network architectures with thorough comparisons of existing DA methods. Importantly, the proposed methods outperform others without introducing any auxiliary models or noticeable extra computational costs, highlighting both effectiveness and efficiency. Code is available at https://github.com/Jackbrocp/EntAugment.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - AdaAugment: A Tuning-Free and Adaptive Approach to Enhance Data Augmentation [12.697608744311122]
AdaAugment is a tuning-free Adaptive Augmentation method.
It dynamically adjusts augmentation magnitudes for individual training samples based on real-time feedback from the target network.
It consistently outperforms other state-of-the-art DA methods in effectiveness while maintaining remarkable efficiency.
arXiv Detail & Related papers (2024-05-19T06:54:03Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Data Augmentation for Seizure Prediction with Generative Diffusion Model [26.967247641926814]
Seizure prediction is of great importance to improve the life of patients.
The severe imbalance problem between preictal and interictal data still poses a great challenge.
Data augmentation is an intuitive way to solve this problem.
We propose a novel data augmentation method with diffusion model called DiffEEG.
arXiv Detail & Related papers (2023-06-14T05:44:53Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - PDE+: Enhancing Generalization via PDE with Adaptive Distributional
Diffusion [66.95761172711073]
generalization of neural networks is a central challenge in machine learning.
We propose to enhance it directly through the underlying function of neural networks, rather than focusing on adjusting input data.
We put this theoretical framework into practice as $textbfPDE+$ ($textbfPDE$ with $textbfA$daptive $textbfD$istributional $textbfD$iffusion)
arXiv Detail & Related papers (2023-05-25T08:23:26Z) - Augmentation-induced Consistency Regularization for Classification [25.388324221293203]
We propose a consistency regularization framework based on data augmentation, called CR-Aug.
CR-Aug forces the output distributions of different sub models generated by data augmentation to be consistent with each other.
We implement CR-Aug to image and audio classification tasks and conduct extensive experiments to verify its effectiveness.
arXiv Detail & Related papers (2022-05-25T03:15:36Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - Cross-Modal Generative Augmentation for Visual Question Answering [34.9601948665926]
This paper introduces a generative model for data augmentation by leveraging the correlations among multiple modalities.
The proposed model is able to quantify the confidence of augmented data by its generative probability, and can be jointly updated with a downstream pipeline.
arXiv Detail & Related papers (2021-05-11T04:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.