GAUDA: Generative Adaptive Uncertainty-guided Diffusion-based Augmentation for Surgical Segmentation
- URL: http://arxiv.org/abs/2501.10819v1
- Date: Sat, 18 Jan 2025 16:40:53 GMT
- Title: GAUDA: Generative Adaptive Uncertainty-guided Diffusion-based Augmentation for Surgical Segmentation
- Authors: Yannik Frisch, Christina Bornberg, Moritz Fuchs, Anirban Mukhopadhyay,
- Abstract summary: We learn semantically comprehensive yet compact latent representations of the (image, mask) space.
We show that our approach can effectively synthesise unseen high-quality paired segmentation data of remarkable semantic coherence.
- Score: 1.0808810256442274
- License:
- Abstract: Augmentation by generative modelling yields a promising alternative to the accumulation of surgical data, where ethical, organisational and regulatory aspects must be considered. Yet, the joint synthesis of (image, mask) pairs for segmentation, a major application in surgery, is rather unexplored. We propose to learn semantically comprehensive yet compact latent representations of the (image, mask) space, which we jointly model with a Latent Diffusion Model. We show that our approach can effectively synthesise unseen high-quality paired segmentation data of remarkable semantic coherence. Generative augmentation is typically applied pre-training by synthesising a fixed number of additional training samples to improve downstream task models. To enhance this approach, we further propose Generative Adaptive Uncertainty-guided Diffusion-based Augmentation (GAUDA), leveraging the epistemic uncertainty of a Bayesian downstream model for targeted online synthesis. We condition the generative model on classes with high estimated uncertainty during training to produce additional unseen samples for these classes. By adaptively utilising the generative model online, we can minimise the number of additional training samples and centre them around the currently most uncertain parts of the data distribution. GAUDA effectively improves downstream segmentation results over comparable methods by an average absolute IoU of 1.6% on CaDISv2 and 1.5% on CholecSeg8k, two prominent surgical datasets for semantic segmentation.
Related papers
- EntAugment: Entropy-Driven Adaptive Data Augmentation Framework for Image Classification [10.334396596691048]
We propose EntAugment, a tuning-free and adaptive DA framework.
It dynamically assesses and adjusts the augmentation magnitudes for each sample during training.
We also introduce a novel entropy regularization term, EntLoss, which complements the EntAugment approach.
arXiv Detail & Related papers (2024-09-10T07:42:47Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
We present InterHandGen, a novel framework that learns the generative prior of two-hand interaction.
For sampling, we combine anti-penetration and synthesis-free guidance to enable plausible generation.
Our method significantly outperforms baseline generative models in terms of plausibility and diversity.
arXiv Detail & Related papers (2024-03-26T06:35:55Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Unsupervised augmentation optimization for few-shot medical image
segmentation [15.651920380963073]
We propose a framework to determine the optimal'' parameters without human annotations.
Extensive experiments demonstrate the superiority of our optimized augmentation in boosting few-shot segmentation models.
We even achieve a significant improvement for SSL-ALP on the left kidney by 3.39% on the Abd-CT dataset.
arXiv Detail & Related papers (2023-06-08T11:15:04Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Unified Framework for Histopathology Image Augmentation and Classification via Generative Models [6.404713841079193]
We propose an innovative unified framework that integrates the data generation and model training stages into a unified process.
Our approach utilizes a pure Vision Transformer (ViT)-based conditional Generative Adversarial Network (cGAN) model to simultaneously handle both image synthesis and classification.
Our experiments show that our unified synthetic augmentation framework consistently enhances the performance of histopathology image classification models.
arXiv Detail & Related papers (2022-12-20T03:40:44Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - A Twin Neural Model for Uplift [59.38563723706796]
Uplift is a particular case of conditional treatment effect modeling.
We propose a new loss function defined by leveraging a connection with the Bayesian interpretation of the relative risk.
We show our proposed method is competitive with the state-of-the-art in simulation setting and on real data from large scale randomized experiments.
arXiv Detail & Related papers (2021-05-11T16:02:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.