LAMP: Learnable Meta-Path Guided Adversarial Contrastive Learning for Heterogeneous Graphs
- URL: http://arxiv.org/abs/2409.06323v1
- Date: Tue, 10 Sep 2024 08:27:39 GMT
- Title: LAMP: Learnable Meta-Path Guided Adversarial Contrastive Learning for Heterogeneous Graphs
- Authors: Siqing Li, Jin-Duk Park, Wei Huang, Xin Cao, Won-Yong Shin, Zhiqiang Xu,
- Abstract summary: Heterogeneous Graph Contrastive Learning (HGCL) usually requires pre-defined meta-paths.
textsfLAMP integrates various meta-path sub-graphs into a unified and stable structure.
textsfLAMP significantly outperforms existing state-of-the-art unsupervised models in terms of accuracy and robustness.
- Score: 22.322402072526927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous graph neural networks (HGNNs) have significantly propelled the information retrieval (IR) field. Still, the effectiveness of HGNNs heavily relies on high-quality labels, which are often expensive to acquire. This challenge has shifted attention towards Heterogeneous Graph Contrastive Learning (HGCL), which usually requires pre-defined meta-paths. However, our findings reveal that meta-path combinations significantly affect performance in unsupervised settings, an aspect often overlooked in current literature. Existing HGCL methods have considerable variability in outcomes across different meta-path combinations, thereby challenging the optimization process to achieve consistent and high performance. In response, we introduce \textsf{LAMP} (\underline{\textbf{L}}earn\underline{\textbf{A}}ble \underline{\textbf{M}}eta-\underline{\textbf{P}}ath), a novel adversarial contrastive learning approach that integrates various meta-path sub-graphs into a unified and stable structure, leveraging the overlap among these sub-graphs. To address the denseness of this integrated sub-graph, we propose an adversarial training strategy for edge pruning, maintaining sparsity to enhance model performance and robustness. \textsf{LAMP} aims to maximize the difference between meta-path and network schema views for guiding contrastive learning to capture the most meaningful information. Our extensive experimental study conducted on four diverse datasets from the Heterogeneous Graph Benchmark (HGB) demonstrates that \textsf{LAMP} significantly outperforms existing state-of-the-art unsupervised models in terms of accuracy and robustness.
Related papers
- GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning [0.0]
Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations.
Current graph neural network models face the challenge of requiring extensive labeled data.
We propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning.
arXiv Detail & Related papers (2024-09-12T03:09:05Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive
Learning [16.391439666603578]
We propose a new multi-scale meta-path integrated heterogeneous graph contrastive learning (M2HGCL) model.
Specifically, we expand the meta-paths and jointly aggregate the direct neighbor information, the initial meta-path neighbor information and the expanded meta-path neighbor information.
Through extensive experiments on three real-world datasets, we demonstrate that M2HGCL outperforms the current state-of-the-art baseline models.
arXiv Detail & Related papers (2023-09-03T06:39:56Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Heterogeneous Graph Contrastive Multi-view Learning [11.489983916543805]
Graph contrastive learning (GCL) has been developed to learn discriminative node representations on graph datasets.
We propose a novel Heterogeneous Graph Contrastive Multi-view Learning (HGCML) model.
HGCML consistently outperforms state-of-the-art baselines on five real-world benchmark datasets.
arXiv Detail & Related papers (2022-10-01T10:53:48Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
We propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN)
Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data.
Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies.
arXiv Detail & Related papers (2021-06-12T22:22:10Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.