論文の概要: MoRE: A Mixture of Reflectors Framework for Large Language Model-Based Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2409.06377v2
- Date: Sun, 13 Jul 2025 14:32:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:21.263934
- Title: MoRE: A Mixture of Reflectors Framework for Large Language Model-Based Sequential Recommendation
- Title(参考訳): MoRE: 大規模言語モデルに基づくシーケンスレコメンデーションのためのリフレクタフレームワーク
- Authors: Weicong Qin, Yi Xu, Weijie Yu, Chenglei Shen, Xiao Zhang, Ming He, Jianping Fan, Jun Xu,
- Abstract要約: 大規模言語モデル(LLM)は、シーケンシャルなレコメンデーションにおいて最先端のアプローチとして登場した。
これらのギャップに対処するために、3つの視点対応のオフライン反射プロセスを導入するMOREを提案する。
MoREのメタリフレクタは自己改善戦略と動的選択機構を採用し、進化するユーザの好みに適応する。
- 参考スコア(独自算出の注目度): 16.10791252542592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have emerged as a cutting-edge approach in sequential recommendation, leveraging historical interactions to model dynamic user preferences. Current methods mainly focus on learning processed recommendation data in the form of sequence-to-sequence text. While effective, they exhibit three key limitations: 1) failing to decouple intra-user explicit features (e.g., product titles) from implicit behavioral patterns (e.g., brand loyalty) within interaction histories; 2) underutilizing cross-user collaborative filtering (CF) signals; and 3) relying on inefficient reflection update strategies. To address this, We propose MoRE (Mixture of REflectors), which introduces three perspective-aware offline reflection processes to address these gaps. This decomposition directly resolves Challenges 1 (explicit/implicit ambiguity) and 2 (CF underutilization). Furthermore, MoRE's meta-reflector employs a self-improving strategy and a dynamic selection mechanism (Challenge 3) to adapt to evolving user preferences. First, two intra-user reflectors decouple explicit and implicit patterns from a user's interaction sequence, mimicking traditional recommender systems' ability to distinguish surface-level and latent preferences. A third cross-user reflector captures CF signals by analyzing user similarity patterns from multiple users' interactions. To optimize reflection quality, MoRE's meta-reflector employs a offline self-improving strategy that evaluates reflection impacts through comparisons of presence/absence and iterative refinement of old/new versions, with a online contextual bandit mechanism dynamically selecting the optimal perspective for recommendation for each user. Code: https://github.com/E-qin/MoRE-Rec.
- Abstract(参考訳): 大規模言語モデル(LLM)は、動的ユーザの嗜好をモデル化するために歴史的相互作用を活用する、シーケンシャルなレコメンデーションにおいて最先端のアプローチとして登場した。
現在の手法は、主にシークエンス・ツー・シークエンステキストの形式で処理されたレコメンデーションデータを学習することに焦点を当てている。
効果はあるものの、それらは3つの重要な限界を示す。
1) ユーザ内の明示的な特徴(例えば製品タイトル)を,インタラクション履歴内の暗黙的な行動パターン(例えばブランドの忠誠)から切り離すことができないこと。
2) ユーザ間協調フィルタリング(CF)信号の活用,及び
3)非効率なリフレクション更新戦略に頼る。
そこで我々は、3つの視点を意識したオフライン反射プロセスを導入し,これらのギャップに対処するMORE(Mixture of Reflectors)を提案する。
この分解はチャレンジ1(明示的/単純曖昧さ)と2(CFアンダーユーティリティ)を直接解決する。
さらに、MoREのメタリフレクタは自己改善戦略と動的選択機構を採用している(Challenge)。
3) ユーザの好みに適応する。
まず、ユーザ内の2つのリフレクタが、ユーザのインタラクションシーケンスから明示的なパターンと暗黙的なパターンを分離し、従来のレコメンダシステムの、表面レベルと潜時的な好みを区別する能力を模倣する。
第3のクロスユーザリフレクタは、複数のユーザのインタラクションからユーザ類似パターンを分析して、CF信号をキャプチャする。
反射品質を最適化するために、MoREのメタリフレクタでは、古いバージョンと新しいバージョンの比較と反復的な改善を通じて反射の影響を評価するオフライン自己改善戦略を採用している。
コード:https://github.com/E-qin/MoRE-Rec.com
関連論文リスト
- LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation [49.78419076215196]
シーケンスレコメンデーションは、類似したユーザやアイテムの履歴行動から協調フィルタリング(CF)信号をモデル化することで、ユーザの将来のインタラクションを予測することを目的としている。
従来のシーケンシャルなレコメンダは、高次の共起パターンを通じてCF信号をキャプチャするIDベースの埋め込みに依存している。
大規模言語モデル(LLM)の最近の進歩は、テキスト記述からアイテム表現を導出するテキストベースのレコメンデーションアプローチを動機付けている。
理想的な埋め込みモデルは、ドメイン内およびドメイン外のレコメンデーションパフォーマンスを改善するために、CF信号とリッチなセマンティック表現をシームレスに統合すべきである、と我々は主張する。
論文 参考訳(メタデータ) (2025-06-16T13:27:06Z) - A Framework for Generating Conversational Recommendation Datasets from Behavioral Interactions [2.0693204407592836]
ConvRecStudioは、リアルタイムなマルチターンダイアログをシミュレートするフレームワークで、タイムスタンプによるユーザとイテムのインタラクションとレビューに基礎を置いている。
我々は、MobileRec、Yelp、Amazon Electronicsの3つのドメインにConvRecStudioを適用する。
論文 参考訳(メタデータ) (2025-06-14T22:58:48Z) - Embed Progressive Implicit Preference in Unified Space for Deep Collaborative Filtering [13.24227546548424]
GNOLR(Generalized Neural Ordinal Logistic Regression)は、ユーザエンゲージメントの構造的進行を捉えるために提案されている。
GNOLRは予測精度を高め、ユーザのエンゲージメントの進行を捉え、検索プロセスを単純化する。
10の実世界のデータセットでの実験では、GNOLRは効率と適応性において最先端の手法を大幅に上回っている。
論文 参考訳(メタデータ) (2025-05-27T08:43:35Z) - AgentRecBench: Benchmarking LLM Agent-based Personalized Recommender Systems [17.329692234349768]
エージェントレコメンデータシステムはLarge Language Models (LLM)を利用している
LLMの高度な推論とロールプレイング能力は、自律的で適応的な意思決定を可能にする。
この分野では、これらの手法を評価するための標準化された評価プロトコルが欠けている。
論文 参考訳(メタデータ) (2025-05-26T07:45:11Z) - ThinkRec: Thinking-based recommendation via LLM [19.398302729633397]
ThinkRec は LLM4Rec を System 1 から System 2 (レーショナルシステム) に移行する思考ベースのフレームワークである。
ThinkRecは、キーワードの要約でアイテムメタデータを拡張し、合成推論トレースを注入するシンクアクティベーションメカニズムを導入している。
ThinkRecは、ユーザの潜在機能に基づいて専門家モデルに重みを動的に割り当てることで、個々のユーザへの推論パスを適応させ、精度とパーソナライゼーションを向上させる。
論文 参考訳(メタデータ) (2025-05-21T04:25:18Z) - Instruct-of-Reflection: Enhancing Large Language Models Iterative Reflection Capabilities via Dynamic-Meta Instruction [11.838351314880736]
インストラクション・オブ・リフレクション(英: Instruct-of-Reflection、IoRT)は、大規模言語モデル(LLM)の反復的リフレクション能力を高めるために動的メタ命令を活用する、新しく一般的なリフレクションフレームワークである。
実験の結果、IoRTは数学的および常識的推論タスクにおいて、確立されたベースラインよりも平均10.1%向上していることがわかった。
論文 参考訳(メタデータ) (2025-03-02T14:02:03Z) - OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment [9.99840965933561]
ケースドラーニングフレームワークを統一的な生成モデルで置き換えるOneRecを提案する。
1) ユーザの履歴行動シーケンスをエンコードし、ユーザが興味を持っているかもしれない動画を徐々にデコードするエンコーダ・デコーダ構造。
論文 参考訳(メタデータ) (2025-02-26T09:25:10Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
大規模言語モデル (LLM) は、ユーザの振る舞いを理解するためのレコメンデーションシステムに統合されている。
既存のRAGメソッドは主にテキストのセマンティクスに依存しており、しばしば最も関連性の高い項目を組み込むことができない。
検索強化大言語モデル推薦(RALLRec)のための表現学習を提案する。
論文 参考訳(メタデータ) (2025-02-10T02:15:12Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
本稿では,ユーザの嗜好に関する明確な推論を新たなアライメント目標として組み込んだ,新たなDeliberative Recommendationタスクを提案する。
次にReasoningを利用したRecommenderフレームワークを導入する。
論文 参考訳(メタデータ) (2025-02-04T07:17:54Z) - Enhancing User Intent for Recommendation Systems via Large Language Models [0.0]
DUIPはLSTMネットワークとLLM(Large Language Models)を組み合わせた新しいフレームワークで、ユーザの意図を動的に把握し、パーソナライズされたアイテムレコメンデーションを生成する。
この結果から,DUIPは次世代レコメンデーションシステムにとって有望なアプローチであり,クロスモーダルレコメンデーションとスケーラビリティのさらなる向上の可能性が示唆された。
論文 参考訳(メタデータ) (2025-01-18T20:35:03Z) - Meta-Reflection: A Feedback-Free Reflection Learning Framework [57.14485943991588]
外部からのフィードバックを伴わずに単一の推論パスのみを必要とするフィードバックフリーリフレクション機構であるメタリフレクションを提案する。
過去のリフレクションを記憶し、取り出す人間の能力によって、メタリフレクションはコードブックに反射的な洞察を統合する。
実世界のシナリオにおけるメタリフレクションの実践性を徹底的に検討し,評価するために,E-Commerce Customer Intent Detectionという産業eコマースベンチマークを導入する。
論文 参考訳(メタデータ) (2024-12-18T12:20:04Z) - PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking [0.0]
PRefLexORは、好みの最適化と強化学習の概念を組み合わせることで、モデルを自己学習可能にする。
本研究は, 生体材料科学の応用に焦点をあて, 様々なケーススタディでその手法を実証する。
論文 参考訳(メタデータ) (2024-10-16T08:46:26Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
大言語モデル(LLM)は、その人気に関係なく、項目間の意味的関係を理解する能力を持つ。
LLMEmbは、LCMを利用してアイテム埋め込みを作成し、シークエンシャル・レコメンダ・システムの性能を高める革新的な技術である。
論文 参考訳(メタデータ) (2024-09-30T03:59:06Z) - Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
単一の画像反射除去は本質的に不明瞭であり、分離を必要とする反射成分と透過成分の両方が自然な画像統計に従う可能性がある。
既存の手法では、様々な種類の低レベルおよび物理ベースのキューを反射信号の源として利用することでこの問題に対処しようとする。
本稿では,様々な形態のスパース・ヒューマン・ガイダンスを活用するフレキシブル・インタラクティブ・リフレクション・リフレクション・リフレクション・リフレクション・リジェクション・リジェクション・アプローチを提案する。
論文 参考訳(メタデータ) (2024-06-03T17:34:37Z) - Enhancing Sequential Recommender with Large Language Models for Joint Video and Comment Recommendation [77.42486522565295]
我々は、パーソナライズされたビデオとコメントのレコメンデーションを共同で行うLSVCRと呼ばれる新しいレコメンデーション手法を提案する。
提案手法は,逐次レコメンデーション(SR)モデルと補足型大言語モデル(LLM)レコメンデーションという2つの重要なコンポーネントから構成される。
特に、コメント視聴時間の累積増加率は4.13%に達した。
論文 参考訳(メタデータ) (2024-03-20T13:14:29Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
進化的思考を伴う動的反射(Dynamic Reflection with Divergent Thinking)という新しい推論原理を導入する。
我々の方法論はダイナミックリフレクション(動的リフレクション)であり、探索、批評、反射を通じて人間の学習をエミュレートするプロセスである。
6つの事前学習 LLM を用いた3つのデータセットに対するアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-18T16:41:22Z) - Representation Learning with Large Language Models for Recommendation [34.46344639742642]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z) - On Generative Agents in Recommendation [58.42840923200071]
Agent4Recは、Large Language Modelsに基づいたレコメンデーションのユーザーシミュレータである。
各エージェントは、ページ単位でパーソナライズされた推奨モデルと対話する。
論文 参考訳(メタデータ) (2023-10-16T06:41:16Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
強化学習アルゴリズムは、レコメンデータシステムのユーザエンゲージメントを最適化するために使用することができる。
しかし、RLアプローチはスレートレコメンデーションシナリオでは難解である。
この設定では、アクションはアイテムの組み合わせを含むことができるスレートに対応する。
本研究では,変分オートエンコーダによって学習された連続低次元ラテント空間におけるスレートの符号化を提案する。
我々は、(i)以前の作業で要求される仮定を緩和し、(ii)完全なスレートをモデル化することで、アクション選択の品質を向上させることができる。
論文 参考訳(メタデータ) (2023-01-20T15:28:09Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
逐次リコメンデーションタスクのための自己指導型強化学習を提案する。
提案手法は,2つの出力層を持つ標準レコメンデーションモデルを強化する。
このようなアプローチに基づいて、自己監督型Q-ラーニング(SQN)と自己監督型アクター・クライブ(SAC)という2つのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T11:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。