論文の概要: Seg-HGNN: Unsupervised and Light-Weight Image Segmentation with Hyperbolic Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.06589v1
- Date: Tue, 10 Sep 2024 15:30:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 16:59:09.665244
- Title: Seg-HGNN: Unsupervised and Light-Weight Image Segmentation with Hyperbolic Graph Neural Networks
- Title(参考訳): Seg-HGNN:ハイパーボリックグラフニューラルネットワークによる教師なしおよび軽量画像分割
- Authors: Debjyoti Mondal, Rahul Mishra, Chandan Pandey,
- Abstract要約: 画像セグメンテーションのための軽量なハイパーボリックグラフニューラルネットワークを導入し、パッチレベルの特徴を非常に小さな埋め込みサイズで包含する。
我々のソリューションであるSeg-HGNNは、現在の最高の教師なし手法を2.5%、VOC-07では4%、ローカライゼーションではVOC-12、セグメンテーションではCUB-200では1.3%、セグメンテーションではECSSDを0.8%上回る。
- 参考スコア(独自算出の注目度): 5.872014229110214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image analysis in the euclidean space through linear hyperspaces is well studied. However, in the quest for more effective image representations, we turn to hyperbolic manifolds. They provide a compelling alternative to capture complex hierarchical relationships in images with remarkably small dimensionality. To demonstrate hyperbolic embeddings' competence, we introduce a light-weight hyperbolic graph neural network for image segmentation, encompassing patch-level features in a very small embedding size. Our solution, Seg-HGNN, surpasses the current best unsupervised method by 2.5\%, 4\% on VOC-07, VOC-12 for localization, and by 0.8\%, 1.3\% on CUB-200, ECSSD for segmentation, respectively. With less than 7.5k trainable parameters, Seg-HGNN delivers effective and fast ($\approx 2$ images/second) results on very standard GPUs like the GTX1650. This empirical evaluation presents compelling evidence of the efficacy and potential of hyperbolic representations for vision tasks.
- Abstract(参考訳): 線形超空間によるユークリッド空間の画像解析はよく研究されている。
しかし、より効果的な画像表現の探求において、双曲多様体に目を向ける。
これらは、非常に小さな次元を持つ画像における複雑な階層的関係をキャプチャする、魅力的な代替手段を提供する。
ハイパーボリック埋め込みの能力を示すために,画像セグメント化のための軽量ハイパーボリックグラフニューラルネットワークを導入し,非常に小さな埋め込みサイズでパッチレベルの特徴を包含する。
我々のソリューションであるSeg-HGNNは、現在の最高の教師なし手法を2.5 %、VOC-07では4 %、ローカライゼーションではVOC-12、セグメンテーションではCUB-200では0.8 %、ECSSDでは1.3 %で上回っている。
7.5k以下のトレーニング可能なパラメータを持つSeg-HGNNは、GTX1650のような非常に標準的なGPU上で、効果的で高速な(2$イメージ/秒)結果を提供する。
この経験的評価は、視覚タスクに対する双曲表現の有効性と可能性の説得力のある証拠を提示する。
関連論文リスト
- CiliaGraph: Enabling Expression-enhanced Hyper-Dimensional Computation in Ultra-Lightweight and One-Shot Graph Classification on Edge [1.8726646412385333]
CiliaGraphはグラフ分類のための拡張表現型だが超軽量なHDCモデルである。
CiliaGraphはメモリ使用量を削減し、トレーニング速度を平均292倍に高速化する。
論文 参考訳(メタデータ) (2024-05-29T12:22:59Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
ハイパースペクトル画像(HSI)クラスタリングは重要な課題だが難しい課題である。
まず3次元と2次元のハイブリッド畳み込みニューラルネットワークを用いてHSIの高次空間およびスペクトルの特徴を抽出する。
次に,超画素グラフの対比クラスタリングモデルを設計し,識別的超画素表現を学習する。
論文 参考訳(メタデータ) (2024-03-04T07:40:55Z) - Grid Jigsaw Representation with CLIP: A New Perspective on Image
Clustering [37.15595383168132]
GJR(Grid Jigsaw Representation)と呼ばれる、画像クラスタリングのためのJigsawベースの戦略手法。
GJRモジュールは、さまざまな深層畳み込みネットワークに付加され、幅広いベンチマークデータセットで大幅に改善された。
実験の結果,ACC,NMI,ARIの3つの指標と超高速収束速度に対するクラスタリング作業の有効性が示された。
論文 参考訳(メタデータ) (2023-10-27T03:07:05Z) - Unsupervised Image Semantic Segmentation through Superpixels and Graph
Neural Networks [6.123324869194195]
ラベル付きデータが不足している多くの実世界のシナリオでは、教師なしのイメージセグメンテーションが重要なタスクである。
本稿では,相互情報最大化(MIM),ニューラルスーパーピクセル,グラフニューラルネットワーク(GNN)をエンドツーエンドに組み合わせて,教師なし学習の最近の進歩を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-21T08:35:18Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - A Dual Neighborhood Hypergraph Neural Network for Change Detection in
VHR Remote Sensing Images [12.222830717774118]
本稿では,双対近傍ハイパーグラフニューラルネットワークを提案する。
提案手法は,多くの最先端手法と比較して有効性とロバスト性が高い。
論文 参考訳(メタデータ) (2022-02-27T02:39:08Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
全方向画像の表現モデルの学習について検討し、全方向画像の深層学習モデルで使用される数学的ツールを再定義するために、HEALPixの球面一様サンプリングの特性を利用することを提案する。
提案したオン・ザ・スフィア・ソリューションは、等方形画像に適用された類似の学習モデルと比較して、13.7%のビットレートを節約できる圧縮ゲインを向上させる。
論文 参考訳(メタデータ) (2021-07-19T22:14:30Z) - Semi-supervised Hyperspectral Image Classification with Graph Clustering
Convolutional Networks [41.78245271989529]
HSI分類のためのグラフ畳み込みネットワーク(GCN)に基づくフレームワークを提案する。
特に、類似のスペクトル特徴を持つ画素をスーパーピクセルにまずクラスターし、入力したhsiのスーパーピクセルに基づいてグラフを構築する。
その後、エッジを弱い重みで刻むことでいくつかの部分グラフに分割し、高い類似性を持つノードの相関性を強化する。
論文 参考訳(メタデータ) (2020-12-20T14:16:59Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
空間情報とスペクトル情報の相互モダリティ分布が問題となる。
本稿では,PZRes-Netという,新しいテクスライトウェイトなディープニューラルネットワークベースのフレームワークを提案する。
本フレームワークは,高分解能かつテクテッセロ中心の残像を学習し,シーンの空間的詳細を高頻度で表現する。
論文 参考訳(メタデータ) (2020-06-18T06:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。