論文の概要: Discovering Long-Term Effects on Parameter Efficient Fine-tuning
- arxiv url: http://arxiv.org/abs/2409.06706v1
- Date: Sat, 24 Aug 2024 03:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:21:30.454519
- Title: Discovering Long-Term Effects on Parameter Efficient Fine-tuning
- Title(参考訳): パラメータ効率の良い微調整における長期的影響の解明
- Authors: Gaole Dai, Yiming Tang, Chunkai Fan, Qizhe Zhang, Zhi Zhang, Yulu Gan, Chengqing Zeng, Shanghang Zhang, Tiejun Huang,
- Abstract要約: 事前訓練されたニューラルネットワーク(Annns)は、堅牢なパターン認識機能を示す。
アンとBNNはヒト脳、特にBNNと大きな類似点を共有している
アンは微調整によって新しい知識を得ることができる。
- 参考スコア(独自算出の注目度): 36.83255498301937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pre-trained Artificial Neural Networks (ANNs) exhibit robust pattern recognition capabilities and share extensive similarities with the human brain, specifically Biological Neural Networks (BNNs). We are particularly intrigued by these models' ability to acquire new knowledge through fine-tuning. In this regard, Parameter-efficient Fine-tuning (PEFT) has gained widespread adoption as a substitute for full fine-tuning due to its cost reduction in training and mitigation of over-fitting risks by limiting the number of trainable parameters during adaptation. Since both ANNs and BNNs propagate information layer-by-layer, a common analogy can be drawn: weights in ANNs represent synapses in BNNs, while features (also known as latent variables or logits) in ANNs represent neurotransmitters released by neurons in BNNs. Mainstream PEFT methods aim to adjust feature or parameter values using only a limited number of trainable parameters (usually less than 1% of the total parameters), yet achieve surprisingly good results. Building upon this clue, we delve deeper into exploring the connections between feature adjustment and parameter adjustment, resulting in our proposed method Synapses & Neurons (SAN) that learns scaling matrices for features and propagates their effects towards posterior weight matrices. Our approach draws strong inspiration from well-known neuroscience phenomena - Long-term Potentiation (LTP) and Long-term Depression (LTD), which also reveal the relationship between synapse development and neurotransmitter release levels. We conducted extensive comparisons of PEFT on 26 datasets using attention-based networks as well as convolution-based networks, leading to significant improvements compared to other tuning methods (+8.5% over fully-finetune, +7% over Visual Prompt Tuning, and +3.2% over LoRA). The codes would be released.
- Abstract(参考訳): 事前訓練されたニューラルネットワーク(ANN)は、堅牢なパターン認識能力を示し、人間の脳、特にバイオニューラルネットワーク(BNN)と広範囲に類似している。
我々はこれらのモデルが微調整によって新しい知識を得る能力に特に興味をそそられる。
この点において,パラメータ効率のよいファインチューニング(PEFT)は,適応時のトレーニング可能なパラメータの数を制限することにより,トレーニングコストの削減と過適合リスクの軽減により,フルファインチューニングの代替として広く採用されている。
ANNの重みはBNNのシナプスを表し、ANNの機能(潜伏変数またはロジットとも呼ばれる)はBNNのニューロンによって放出される神経伝達物質を表す。
主流PEFT法は、限られた数のトレーニング可能なパラメータ(通常は全パラメータの1%未満)で特徴値やパラメータ値を調整することを目的としているが、驚くほど良い結果が得られる。
この手がかりに基づいて,特徴量調整とパラメータ調整の関連性を探究し,特徴量行列のスケーリングを学習し,後部重量行列に対するそれらの効果を伝播する手法であるSynapses & Neurons (SAN)を提案する。
我々のアプローチは、よく知られた神経科学現象であるLTP(Long-term Potentiation)とLTD(Long-term Depression)から強いインスピレーションを受け、シナプス発生と神経伝達物質放出レベルとの関係を明らかにする。
我々は、注意に基づくネットワークと畳み込みに基づくネットワークを用いて26のデータセットに対してPEFTを広範囲に比較し、他のチューニング手法(+8.5%、+7%、Visual Prompt Tuning、+3.2%)と比較して大幅に改善した。
コードはリリースされます。
関連論文リスト
- rule4ml: An Open-Source Tool for Resource Utilization and Latency Estimation for ML Models on FPGA [0.0]
本稿では、FPGA上での合成と実装に先立って、ニューラルネットワーク(NN)のリソース利用と推論遅延を予測する新しい手法を提案する。
NNを高レベル合成(HLS)コードに変換するツールフローであるHLS4MLを活用している。
本手法では, 即時前合成予測に適応した回帰モデルを用いる。
論文 参考訳(メタデータ) (2024-08-09T19:35:10Z) - Unlock the Correlation between Supervised Fine-Tuning and Reinforcement Learning in Training Code Large Language Models [12.656574142412484]
本研究では,教師付き微調整と強化学習の相関関係の解明を試みる。
SFTの一般化には原子関数と合成関数の両方が不可欠である。
論文 参考訳(メタデータ) (2024-06-14T03:39:01Z) - Let's Focus on Neuron: Neuron-Level Supervised Fine-tuning for Large Language Model [43.107778640669544]
大型言語モデル(LLM)は、様々な行動や役割を示すニューロンで構成されている。
最近の研究によると、全てのニューロンが異なるデータセットで活動しているわけではない。
我々は,パラメータ学習の粒度を個々のニューロンに絞り込む新しいアプローチであるNeFT(Neuron-Level Fine-Tuning)を導入する。
論文 参考訳(メタデータ) (2024-03-18T09:55:01Z) - Fine-Tuning Surrogate Gradient Learning for Optimal Hardware Performance
in Spiking Neural Networks [1.52292571922932]
スパイキングニューラルネットワーク(SNN)は、ハードウェアで慎重に活用することで、膨大なエネルギー効率の恩恵をもたらすことができる。
この研究は、トレーニングがハードウェアのパフォーマンスに与える影響に関する新たな洞察を明らかにします。
論文 参考訳(メタデータ) (2024-02-09T06:38:12Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Vision Transformers are Robust Learners [65.91359312429147]
ビジョントランスフォーマー(ViT)の一般的な腐敗や摂動、分布シフト、自然逆転例に対する堅牢性について検討します。
ViTsが実際により堅牢な学習者である理由を説明するために、定量的および定性的な指標を提供する分析を提示します。
論文 参考訳(メタデータ) (2021-05-17T02:39:22Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
本稿では,難しい場合であっても,ハイブリッドベースラインに近い性能を示すエンドツーエンドアプローチについて論じる。
CTC-Attention と RNN-Transducer のアプローチと RNN と Transformer のアーキテクチャを比較し,解析する。
RNN-Transducerをベースとしたベストエンド・ツー・エンドモデルでは、ビームサーチの改善とともに、LF-MMI TDNN-F CHiME-6 Challengeのベースラインよりも品質が3.8%向上した。
論文 参考訳(メタデータ) (2020-04-22T19:08:33Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。