論文の概要: Physics-informed DeepCT: Sinogram Wavelet Decomposition Meets Masked Diffusion
- arxiv url: http://arxiv.org/abs/2501.09935v1
- Date: Fri, 17 Jan 2025 03:16:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:58:49.265695
- Title: Physics-informed DeepCT: Sinogram Wavelet Decomposition Meets Masked Diffusion
- Title(参考訳): 物理インフォームドDeepCT:Sinogram Wavelet Decomposition with Masked Diffusion
- Authors: Zekun Zhou, Tan Liu, Bing Yu, Yanru Gong, Liu Shi, Qiegen Liu,
- Abstract要約: 拡散モデルではスパース・ビュー・コンピュート・トモグラフィー(SVCT)の再建に有意な可能性がある。
SVCT再構成のためのSinogram-based Wavelet random decomposition and Random mask diffusion Model (SWARM)を提案する。
- 参考スコア(独自算出の注目度): 9.126628956920904
- License:
- Abstract: Diffusion model shows remarkable potential on sparse-view computed tomography (SVCT) reconstruction. However, when a network is trained on a limited sample space, its generalization capability may be constrained, which degrades performance on unfamiliar data. For image generation tasks, this can lead to issues such as blurry details and inconsistencies between regions. To alleviate this problem, we propose a Sinogram-based Wavelet random decomposition And Random mask diffusion Model (SWARM) for SVCT reconstruction. Specifically, introducing a random mask strategy in the sinogram effectively expands the limited training sample space. This enables the model to learn a broader range of data distributions, enhancing its understanding and generalization of data uncertainty. In addition, applying a random training strategy to the high-frequency components of the sinogram wavelet enhances feature representation and improves the ability to capture details in different frequency bands, thereby improving performance and robustness. Two-stage iterative reconstruction method is adopted to ensure the global consistency of the reconstructed image while refining its details. Experimental results demonstrate that SWARM outperforms competing approaches in both quantitative and qualitative performance across various datasets.
- Abstract(参考訳): 拡散モデルではスパース・ビュー・コンピュート・トモグラフィー(SVCT)の再建に有意な有意な可能性がある。
しかし、ネットワークが限られたサンプル空間で訓練されると、その一般化能力は制約され、不慣れなデータの性能が低下する。
画像生成タスクでは、ぼやけた詳細や領域間の不整合といった問題が発生する可能性がある。
この問題を軽減するため,SVCT再構成のためのSinogram-based Wavelet random decomposition and Random mask diffusion Model (SWARM)を提案する。
具体的には、シングラムにランダムマスク戦略を導入することで、限られたトレーニングサンプル空間を効果的に拡張する。
これにより、より広い範囲のデータ分散を学習し、データ不確実性の理解と一般化を促進することができる。
さらに、ノングラムウェーブレットの高周波成分にランダムなトレーニング戦略を適用することにより、特徴表現が向上し、異なる周波数帯域で詳細をキャプチャする能力が改善され、性能とロバスト性が向上する。
2段階の反復的再構成法を採用し、その詳細を精査しながら、再構成画像のグローバルな整合性を確保する。
実験の結果、SWARMは様々なデータセットにおける定量的および定性的なパフォーマンスにおいて競合するアプローチよりも優れていた。
関連論文リスト
- High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity [69.32473738284374]
本稿では,拡散モデルにおける事前学習されたU-Netのポテンシャルを利用する拡散駆動セグメンテーションモデルDiffDISを提案する。
SDモデルに先立って、頑健な一般化機能とリッチで多目的な画像表現を活用することにより、高忠実で詳細な生成を保ちながら、推論時間を著しく短縮する。
DIS5Kデータセットの実験は、DiffDISの優位性を示し、合理化された推論プロセスを通じて最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-10-14T02:49:23Z) - FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models [14.043383277622874]
シングラムデータに適した新しい拡散型塗布フレームワークを提案する。
FCDMは既存の手法よりも優れており、SSIMが0.95以上、PSNRが30dB以上、SSIMが33%、PSNRが29%である。
論文 参考訳(メタデータ) (2024-08-26T12:31:38Z) - MSDiff: Multi-Scale Diffusion Model for Ultra-Sparse View CT Reconstruction [5.5805994093893885]
マルチスケールディフ融合モデル(MSDiff)を用いた超スパースCT再構成法を提案する。
提案モデルは,包括的サンプリングと選択的スパースサンプリング技術の両方からの情報を統合する。
プロジェクションデータ内の固有相関を利用して、同値マスクを設計し、モデルがより効果的に注意を集中できるようにする。
論文 参考訳(メタデータ) (2024-05-09T14:52:32Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
拡散モデル(DM)は、画像編集や復元などの応用と同様に、無条件生成において優れている。
本研究の目的は、一般化されたCTM(GCTM)を提案することによって、整合性軌道モデル(CTM)の完全なポテンシャルを解放することである。
本稿では,GCTMの設計空間について論じ,画像から画像への変換,復元,編集など,様々な画像操作タスクにおいて有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T07:24:54Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Frequency Compensated Diffusion Model for Real-scene Dehazing [6.105813272271171]
本研究では,実ヘイズへの一般化を改善する条件付き拡散モデルに基づく脱ヘイズフレームワークについて考察する。
提案手法は, 実世界の画像において, 最先端の手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2023-08-21T06:50:44Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
近接場合成開口レーダ(SAR)は、ターゲットの散乱分布ホットスポットの高解像度画像を提供する。
一方、撮像の結果は、サイドローブ、クラッタ、ノイズから必然的に劣化する。
イメージを復元するために、現在の手法では、例えば、点拡散関数(PSF)は空間的に一貫したものであり、ターゲットはスパース点散乱器などで構成されている。
我々は、分解モデルを空間的に可変な複素畳み込みモデルに再構成し、近接場SARのシステム応答を考慮した。
モデルに基づくディープラーニングネットワークは、復元するために設計されている
論文 参考訳(メタデータ) (2022-11-28T01:28:33Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。