論文の概要: Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach
- arxiv url: http://arxiv.org/abs/2409.06728v1
- Date: Tue, 27 Aug 2024 11:08:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:11:34.141170
- Title: Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach
- Title(参考訳): インド株式市場における同期分析のためのRNNとLSTMの活用:閾値に基づく分類アプローチ
- Authors: Sanjay Sathish, Charu C Sharma,
- Abstract要約: 本研究は,機械学習と非線形時系列解析を用いて株価の同期を予測するための新しいアプローチを提案する。
この手法を21年間にわたるインド市場からの20の高資本株のデータセットに適用する。
その結果,本手法は株価同期を精度0.98,F1スコア0.83で予測できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our research presents a new approach for forecasting the synchronization of stock prices using machine learning and non-linear time-series analysis. To capture the complex non-linear relationships between stock prices, we utilize recurrence plots (RP) and cross-recurrence quantification analysis (CRQA). By transforming Cross Recurrence Plot (CRP) data into a time-series format, we enable the use of Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks for predicting stock price synchronization through both regression and classification. We apply this methodology to a dataset of 20 highly capitalized stocks from the Indian market over a 21-year period. The findings reveal that our approach can predict stock price synchronization, with an accuracy of 0.98 and F1 score of 0.83 offering valuable insights for developing effective trading strategies and risk management tools.
- Abstract(参考訳): 本研究は,機械学習と非線形時系列解析を用いて株価の同期を予測するための新しいアプローチを提案する。
株価間の複雑な非線形関係を捉えるために,繰り返しプロット (RP) と相互並行量子化分析 (CRQA) を用いる。
CRP(Cross Recurrence Plot)データを時系列形式にすることで、回帰と分類の両方を通じて株価の同期を予測するために、リカレントニューラルネットワーク(RNN)とLong Short-Term Memory(LSTM)ネットワークを有効にする。
この手法を21年間にわたるインド市場からの20の高資本株のデータセットに適用する。
提案手法は, 有効取引戦略やリスク管理ツールの開発に有用な洞察を提供するため, 0.98 と F1 のスコア 0.83 の精度で, 株価の同期を予測できることが判明した。
関連論文リスト
- Utilizing RNN for Real-time Cryptocurrency Price Prediction and Trading Strategy Optimization [0.5524804393257919]
本研究では、リアルタイム暗号通貨価格予測と最適化取引戦略におけるリカレントニューラルネットワーク(RNN)の利用について検討する。
時系列データにおける長期パターンをキャプチャするRNNの機能を活用することにより,価格予測の精度向上と効果的な取引戦略の確立を目指す。
論文 参考訳(メタデータ) (2024-11-05T22:44:52Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
本稿では、ハイブリッド機械学習アルゴリズムの比較研究を行い、モデル解釈可能性の向上に活用する。
本稿では,金融時系列予測において出現する潜伏関係や複雑なパターンの発掘を目的とした,分解,自己相関関数,指数的三重予測など,時系列統計の事前処理技術に関する体系的な概要を述べる。
論文 参考訳(メタデータ) (2023-12-31T16:38:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Stock Price Prediction Using Temporal Graph Model with Value Chain Data [3.1641827542160805]
本稿では,Long Short-Term Memory Graph Convolutional Neural Network (LSTM-GCN)モデルを提案する。
本実験により,LSTM-GCNモデルでは,価格データに完全に反映されていないバリューチェーンデータから付加的な情報を取得することができることが示された。
論文 参考訳(メタデータ) (2023-03-07T17:24:04Z) - Predicting the State of Synchronization of Financial Time Series using
Cross Recurrence Plots [75.20174445166997]
本研究では,2つの金融時系列の動的同期の将来の状態を予測する新しい手法を提案する。
我々は,同期状態の予測を方法論的に扱うためのディープラーニングフレームワークを採用する。
2つの時系列の同期状態を予測するタスクは、一般的には難しいが、ある種の在庫は、非常に良好な性能で達成できる。
論文 参考訳(メタデータ) (2022-10-26T10:22:28Z) - DNN-ForwardTesting: A New Trading Strategy Validation using Statistical
Timeseries Analysis and Deep Neural Networks [0.6882042556551609]
我々はDNN-forwardtestingと呼ばれる新しいトレーディング戦略を提案し、ディープニューラルネットワークによって予測される将来についてテストすることで適用戦略を決定する。
我々の取引システムは、DNNの予測に適用することで最も効果的な技術指標を計算し、そのような指標を使って取引を誘導する。
論文 参考訳(メタデータ) (2022-10-20T19:00:59Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Neural Networks and Value at Risk [59.85784504799224]
リスクしきい値推定における資産価値のモンテカルロシミュレーションを行う。
株式市場と長期債を試験資産として利用し、ニューラルネットワークについて検討する。
はるかに少ないデータでフィードされたネットワークは、大幅にパフォーマンスが悪くなっています。
論文 参考訳(メタデータ) (2020-05-04T17:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。