論文の概要: Personalized Knowledge Tracing through Student Representation Reconstruction and Class Imbalance Mitigation
- arxiv url: http://arxiv.org/abs/2409.06745v1
- Date: Tue, 10 Sep 2024 07:02:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 17:19:06.746193
- Title: Personalized Knowledge Tracing through Student Representation Reconstruction and Class Imbalance Mitigation
- Title(参考訳): 学生表現再構成とクラス不均衡緩和による個人的知識追跡
- Authors: Zhiyu Chen, Wei Ji, Jing Xiao, Zitao Liu,
- Abstract要約: 知識追跡とは、学習過程を分析することによって、学生の将来のパフォーマンスを予測する手法である。
近年の研究は、強力なディープニューラルネットワークを活用することで大きな進歩を遂げている。
パーソナライズされた知識追跡のための新しいアプローチであるPKTを提案する。
- 参考スコア(独自算出の注目度): 32.52262417461651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge tracing is a technique that predicts students' future performance by analyzing their learning process through historical interactions with intelligent educational platforms, enabling a precise evaluation of their knowledge mastery. Recent studies have achieved significant progress by leveraging powerful deep neural networks. These models construct complex input representations using questions, skills, and other auxiliary information but overlook individual student characteristics, which limits the capability for personalized assessment. Additionally, the available datasets in the field exhibit class imbalance issues. The models that simply predict all responses as correct without substantial effort can yield impressive accuracy. In this paper, we propose PKT, a novel approach for personalized knowledge tracing. PKT reconstructs representations from sequences of interactions with a tutoring platform to capture latent information about the students. Moreover, PKT incorporates focal loss to improve prioritize minority classes, thereby achieving more balanced predictions. Extensive experimental results on four publicly available educational datasets demonstrate the advanced predictive performance of PKT in comparison with 16 state-of-the-art models. To ensure the reproducibility of our research, the code is publicly available at https://anonymous.4open.science/r/PKT.
- Abstract(参考訳): 知識追跡とは、知的教育プラットフォームとの歴史的相互作用を通じて学習プロセスを分析し、知識習得の正確な評価を可能にすることによって、学生の将来のパフォーマンスを予測する技術である。
近年の研究は、強力なディープニューラルネットワークを活用することで大きな進歩を遂げている。
これらのモデルは、質問、スキル、その他の補助情報を用いて複雑な入力表現を構成するが、個別の学生特性を見落とし、パーソナライズされた評価能力を制限する。
さらに、フィールドで利用可能なデータセットは、クラス不均衡の問題を示す。
すべての応答をある程度の努力なしに正確に予測するモデルは、驚くべき精度を得ることができる。
本稿では,パーソナライズされた知識追跡のための新しいアプローチであるPKTを提案する。
PKTは、教師プラットフォームとのインタラクションのシーケンスから表現を再構築し、学生の潜伏した情報をキャプチャする。
さらに、PKTは焦点損失を取り入れ、マイノリティクラスを優先的に改善し、よりバランスの取れた予測を達成する。
4つの公開教育データセットの大規模な実験結果は、16の最先端モデルと比較してPKTの高度な予測性能を示している。
我々の研究の再現性を確保するため、コードはhttps://anonymous.4open.science/r/PKT.comで公開されている。
関連論文リスト
- What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - Enhancing Deep Knowledge Tracing via Diffusion Models for Personalized Adaptive Learning [1.2248793682283963]
本研究は、学習記録におけるデータ不足問題に取り組み、パーソナライズされた適応学習(PAL)のためのDKT性能を向上させることを目的とする。
拡散モデルであるTabDDPMを用いて合成教育記録を生成し、DKTの強化のためのトレーニングデータを強化する。
実験結果から,TabDDPMによるAI生成データにより,DKTの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-25T00:23:20Z) - A Question-centric Multi-experts Contrastive Learning Framework for Improving the Accuracy and Interpretability of Deep Sequential Knowledge Tracing Models [26.294808618068146]
知識追跡は,学生の今後の業績を予測する上で重要な役割を担っている。
ディープニューラルネットワーク(DNN)は、KT問題を解決する大きな可能性を示している。
しかし、KTプロセスのモデル化にディープラーニング技術を適用する際には、いくつかの重要な課題がある。
論文 参考訳(メタデータ) (2024-03-12T05:15:42Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
大規模事前訓練モデル(PTM)は近年大きな成功を収め、人工知能(AI)分野におけるマイルストーンとなった。
知識を巨大なパラメータに格納し、特定のタスクを微調整することで、巨大なパラメータに暗黙的にエンコードされた豊富な知識は、さまざまな下流タスクの恩恵を受けることができる。
AIコミュニティが、モデルをスクラッチから学習するのではなく、下流タスクのバックボーンとしてPTMを採用することは、今、コンセンサスになっている。
論文 参考訳(メタデータ) (2021-06-14T02:40:32Z) - BKT-LSTM: Efficient Student Modeling for knowledge tracing and student
performance prediction [0.24366811507669117]
BKT-LSTMと呼ばれる効率的な学生モデルを提案する。
bktによって評価された個々のtextitskill mastery、k-meansクラスタリングとtextitproblemの難易度によって検出されるtextitability profile(スキル間の学習転送)である。
論文 参考訳(メタデータ) (2020-12-22T18:05:36Z) - Context-Aware Attentive Knowledge Tracing [21.397976659857793]
本稿では、フレキシブルアテンションに基づくニューラルネットワークモデルと、新しい解釈可能なモデルコンポーネントを結合した注意知識追跡手法を提案する。
AKTは、学習者の将来の応答と過去の応答に対する評価質問を関連付ける新しいモノトニックアテンションメカニズムを使用する。
AKT は,既存の KT 手法(場合によっては AUC で最大6% 以上)よりも,将来の学習者応答の予測に優れることを示す。
論文 参考訳(メタデータ) (2020-07-24T02:45:43Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。