論文の概要: Differentiating Student Feedbacks for Knowledge Tracing
- arxiv url: http://arxiv.org/abs/2212.14695v2
- Date: Thu, 13 Feb 2025 03:35:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:46:51.284709
- Title: Differentiating Student Feedbacks for Knowledge Tracing
- Title(参考訳): 知識追跡のための学生のフィードバックの識別
- Authors: Jiajun Cui, Hong Qian, Chanjin Zheng, Lu Wang, Mo Yu, Wei Zhang,
- Abstract要約: 本稿では,訓練における評価に基づいて,様々な反応の寄与を再重み付けする枠組みを提案する。
また,判別応答の少ない精度を維持するために,適応的な予測スコア融合手法を導入する。
- 参考スコア(独自算出の注目度): 28.669001606806525
- License:
- Abstract: Knowledge tracing (KT) is a crucial task in computer-aided education and intelligent tutoring systems, predicting students' performance on new questions from their responses to prior ones. An accurate KT model can capture a student's mastery level of different knowledge topics, as reflected in their predicted performance on different questions. This helps improve the learning efficiency by suggesting appropriate new questions that complement students' knowledge states. However, current KT models have significant drawbacks that they neglect the imbalanced discrimination of historical responses. A significant proportion of question responses provide limited information for discerning students' knowledge mastery, such as those that demonstrate uniform performance across different students. Optimizing the prediction of these cases may increase overall KT accuracy, but also negatively impact the model's ability to trace personalized knowledge states, especially causing a deceptive surge of performance. Towards this end, we propose a framework to reweight the contribution of different responses based on their discrimination in training. Additionally, we introduce an adaptive predictive score fusion technique to maintain accuracy on less discriminative responses, achieving proper balance between student knowledge mastery and question difficulty. Experimental results demonstrate that our framework enhances the performance of three mainstream KT methods on three widely-used datasets.
- Abstract(参考訳): 知識追跡(KT)は,コンピュータ支援教育と知的教習システムにおいて重要な課題であり,学生の質問に対する新しい質問に対する評価を,それ以前の質問に対する回答から予測する。
正確なKTモデルは、異なる質問に対する予測されたパフォーマンスに反映されるように、学生の異なる知識トピックの熟達レベルをキャプチャすることができる。
これにより、生徒の知識状態を補完する適切な新しい質問を提案することで、学習効率を向上させることができる。
しかし、現在のKTモデルは、歴史的応答の不均衡な差別を無視しているという大きな欠点がある。
質問応答のかなりの割合は、異なる学生間で均一なパフォーマンスを示すものなど、学生の知識熟達を識別するための限られた情報を提供する。
これらのケースの予測を最適化することで、全体的なKT精度が向上するだけでなく、パーソナライズされた知識状態を追跡するモデルの能力にも悪影響を及ぼす。
この目的に向けて,訓練における評価に基づいて,異なる応答の寄与を再重み付けする枠組みを提案する。
さらに,学習者の知識習得と質問難易度を適切にバランスさせることにより,識別度を低く抑えるための適応的予測スコア融合手法を提案する。
実験により,本フレームワークは,広く使用されている3つのデータセット上での3つの主流KT手法の性能向上を実証した。
関連論文リスト
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Personalized Knowledge Tracing through Student Representation Reconstruction and Class Imbalance Mitigation [32.52262417461651]
知識追跡とは、学習過程を分析することによって、学生の将来のパフォーマンスを予測する手法である。
近年の研究は、強力なディープニューラルネットワークを活用することで大きな進歩を遂げている。
パーソナライズされた知識追跡のための新しいアプローチであるPKTを提案する。
論文 参考訳(メタデータ) (2024-09-10T07:02:46Z) - Enhancing Knowledge Tracing with Concept Map and Response Disentanglement [5.201585012263761]
本稿では,知識追跡(CRKT)モデルを強化するための概念マップ駆動型応答不整合法を提案する。
CRKTは、答えの選択を直接活用することでKTに恩恵を与える。
さらに,不整合表現を用いて,学生が選択しない選択肢から洞察を得るアンチョセン応答の新規利用について紹介する。
論文 参考訳(メタデータ) (2024-08-23T11:25:56Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
本稿では,学生の記録から学生の知識をトラッキングし,自然言語による説明を提供する認知誘導フレームワークを提案する。
3つの広く使われているデータセットによる実験結果から、LLMは競合する深層知識追跡手法に匹敵する、あるいは優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-23T10:07:21Z) - Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning [10.80973695116047]
知識追跡は、コンピュータ支援教育と知的学習システムにおいて重要な役割を担っている。
現在のアプローチでは、より説明可能な予測を達成するために心理的影響を調査している。
RCKTは,新しい応答型インフルエンサー・インフルエンサー・インフルエンス・インフルエンサー・ナレッジ・トレース・フレームワークである。
論文 参考訳(メタデータ) (2023-12-01T11:27:08Z) - Do We Fully Understand Students' Knowledge States? Identifying and
Mitigating Answer Bias in Knowledge Tracing [12.31363929361146]
知識追跡は、概念に関連した質問との学習相互作用を通じて、学生の進化する知識状態を監視することを目的としている。
解答バイアスの一般的な現象、すなわち、各質問に対する正解と誤解の高度に不均衡な分布がある。
既存のモデルは、KTで高い予測性能を達成するためのショートカットとして解答バイアスを記憶する傾向がある。
論文 参考訳(メタデータ) (2023-08-15T13:56:29Z) - Quiz-based Knowledge Tracing [61.9152637457605]
知識追跡は、学習相互作用に基づいて個人の進化する知識状態を評価することを目的としている。
QKTは、既存の方法と比較して最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-04-05T12:48:42Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。