論文の概要: Modeling Image Tone Dichotomy with the Power Function
- arxiv url: http://arxiv.org/abs/2409.06764v1
- Date: Tue, 10 Sep 2024 17:55:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 17:19:05.389641
- Title: Modeling Image Tone Dichotomy with the Power Function
- Title(参考訳): パワー関数を用いた画像トーン分割のモデル化
- Authors: Axel Martinez, Gustavo Olague, Emilio Hernandez,
- Abstract要約: パワー関数に基づく画像照明モデルにおける二分法の概念を提案する。
この方程式の単純さは、古典的および近代的な画像解析と処理のための新しい道を開く。
- 参考スコア(独自算出の注目度): 0.8999666725996975
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The primary purpose of this paper is to present the concept of dichotomy in image illumination modeling based on the power function. In particular, we review several mathematical properties of the power function to identify the limitations and propose a new mathematical model capable of abstracting illumination dichotomy. The simplicity of the equation opens new avenues for classical and modern image analysis and processing. The article provides practical and illustrative image examples to explain how the new model manages dichotomy in image perception. The article shows dichotomy image space as a viable way to extract rich information from images despite poor contrast linked to tone, lightness, and color perception. Moreover, a comparison with state-of-the-art methods in image enhancement provides evidence of the method's value.
- Abstract(参考訳): 本研究の目的は,パワー関数に基づく画像照明モデルにおける二分法の概念を提示することである。
特に,パワー関数の数学的特性を概説し,照明二分法を抽象化可能な新しい数学的モデルを提案する。
この方程式の単純さは、古典的および近代的な画像解析と処理のための新しい道を開く。
本稿は,新しいモデルが画像知覚における二分法をどのように管理するかを説明するために,実用的で図解的なイメージ例を提供する。
この論文は、トーン、明度、色知覚に結びついているコントラストが低いにもかかわらず、画像からリッチな情報を抽出する手段として、二分法画像空間が有効な方法であることを示している。
さらに、画像強調における最先端手法との比較により、この手法の価値の証拠が得られる。
関連論文リスト
- Compositional Entailment Learning for Hyperbolic Vision-Language Models [54.41927525264365]
画像とテキストのペアを超えて、双曲的埋め込みの自然的階層性を完全に活用する方法を示す。
双曲型視覚言語モデルのための構成的包摂学習を提案する。
数百万の画像テキストペアで訓練された双曲型視覚言語モデルに対する経験的評価は、提案手法が従来のユークリッドCLIP学習より優れていることを示している。
論文 参考訳(メタデータ) (2024-10-09T14:12:50Z) - Explainable Concept Generation through Vision-Language Preference Learning [7.736445799116692]
概念に基づく説明は、ポストホック後のディープニューラルネットワークを説明するための一般的な選択肢となっている。
視覚言語生成モデルを微調整する強化学習に基づく選好最適化アルゴリズムを考案する。
提案手法の有効性と信頼性に加えて,ニューラルネットワーク解析の診断ツールとしての有用性を示す。
論文 参考訳(メタデータ) (2024-08-24T02:26:42Z) - Retinex-Diffusion: On Controlling Illumination Conditions in Diffusion Models via Retinex Theory [19.205929427075965]
我々は,拡散モデルをブラックボックス画像レンダリングとして概念化し,そのエネルギー関数を画像形成モデルに沿って戦略的に分解する。
これは、キャストシャドウ、ソフトシャドウ、反射間など、現実的な照明効果を持つ画像を生成する。
論文 参考訳(メタデータ) (2024-07-29T03:15:07Z) - Enhancing Counterfactual Image Generation Using Mahalanobis Distance with Distribution Preferences in Feature Space [7.00851481261778]
人工知能(AI)の領域では、説明可能な人工知能(XAI)の重要性がますます認識されている。
1つの注目すべきシングルインスタンスXAIアプローチは、モデルの決定を理解するのに役立つ、反ファクトな説明である。
本稿では,ブラックボックスモデルの特徴空間における特徴量の重要性を計算するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:26:53Z) - CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
畳み込みモデルを用いた深層分類モデルによる説明文の要約の可能性について検討する。
実験と分析を通じて、モデル行動のより一貫性と信頼性のあるパターンを明らかにするために、説明を組み合わせることの意味を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-04-16T08:39:29Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
本稿では,複数視点のRGB画像からシーンの照明,幾何学,材料を学習する物理ベースの逆レンダリング手法を提案する。
副産物として、我々の物理ベースの逆レンダリングモデルは、フレキシブルでリアルな素材編集やリライティングを容易にする。
論文 参考訳(メタデータ) (2022-12-09T07:33:49Z) - Compositional Visual Generation with Composable Diffusion Models [80.75258849913574]
拡散モデルを用いた構成生成のための代替的な構造的アプローチを提案する。
画像は拡散モデルの集合を構成することで生成され、それぞれが画像の特定のコンポーネントをモデル化する。
提案手法は, トレーニングで見られるものよりもはるかに複雑なシーンを, テスト時に生成することができる。
論文 参考訳(メタデータ) (2022-06-03T17:47:04Z) - What Image Features Boost Housing Market Predictions? [81.32205133298254]
本稿では,予測アルゴリズムにおける効率的な数値包摂のための視覚特徴抽出手法を提案する。
本稿では,シャノンのエントロピー,重心計算,画像分割,畳み込みニューラルネットワークなどの手法について論じる。
ここで選択された40の画像特徴のセットは、かなりの量の予測能力を持ち、最も強力なメタデータ予測器よりも優れています。
論文 参考訳(メタデータ) (2021-07-15T06:32:10Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - A Set-Theoretic Study of the Relationships of Image Models and Priors
for Restoration Problems [34.956580494340166]
画像復元における各画像モデルの有効性について検討する。
分析結果と一致するデノイング結果を比較した。
モデルに基づく手法を用いて,深層学習法で不必要に活用される画像特性を定量的に示す。
論文 参考訳(メタデータ) (2020-03-29T09:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。