論文の概要: Understanding and Mitigating the Impacts of Differentially Private Census Data on State Level Redistricting
- arxiv url: http://arxiv.org/abs/2409.06801v1
- Date: Tue, 10 Sep 2024 18:11:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 17:07:53.280247
- Title: Understanding and Mitigating the Impacts of Differentially Private Census Data on State Level Redistricting
- Title(参考訳): 個人別国勢調査データの国家レベルの再区分への影響の理解と緩和
- Authors: Christian Cianfarani, Aloni Cohen,
- Abstract要約: データ利用者は、2020年のDASで差分プライバシーを採用したことで動揺した。
我々は、プライバシー保護ノイズの影響について、データユーザーが懸念する可能性のある2つの再制限設定について検討する。
ノイズを考慮しなければ、アナリストが誤った結論を出す可能性があることを観察する。
- 参考スコア(独自算出の注目度): 4.589972411795548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data from the Decennial Census is published only after applying a disclosure avoidance system (DAS). Data users were shaken by the adoption of differential privacy in the 2020 DAS, a radical departure from past methods. The change raises the question of whether redistricting law permits, forbids, or requires taking account of the effect of disclosure avoidance. Such uncertainty creates legal risks for redistricters, as Alabama argued in a lawsuit seeking to prevent the 2020 DAS's deployment. We consider two redistricting settings in which a data user might be concerned about the impacts of privacy preserving noise: drawing equal population districts and litigating voting rights cases. What discrepancies arise if the user does nothing to account for disclosure avoidance? How might the user adapt her analyses to mitigate those discrepancies? We study these questions by comparing the official 2010 Redistricting Data to the 2010 Demonstration Data -- created using the 2020 DAS -- in an analysis of millions of algorithmically generated state legislative redistricting plans. In both settings, we observe that an analyst may come to incorrect conclusions if they do not account for noise. With minor adaptations, though, the underlying policy goals remain achievable: tweaking selection criteria enables a redistricter to draw balanced plans, and illustrative plans can still be used as evidence of the maximum number of majority-minority districts that are possible in a geography. At least for state legislatures, Alabama's claim that differential privacy ``inhibits a State's right to draw fair lines'' appears unfounded.
- Abstract(参考訳): Decennial Censusのデータは、開示回避システム(DAS)を適用した後にのみ公開される。
データ利用者は、2020年のDASにおける差分プライバシーの導入によって揺らぎ、過去の方法から大きく離れている。
この変更は、開示回避の効果を考慮して、法律の再制限が許されるか、強制されるか、という疑問を提起する。
アラバマ州は、2020年のDASの展開を防ぐための訴訟で主張した。
データ利用者がプライバシー保護のノイズの影響を懸念する可能性のある2つの再制限設定について考察する。
利用者が開示回避のために何も説明していない場合、どのような不一致が発生するのか?
その不一致を緩和するために、ユーザはどのように分析を適用するのか?
我々は、公式の2010年再分権データと、2020年DASを用いて作成された2010年実証データを比較して、アルゴリズムによって生成された数百万の州議会再分権計画を分析して、これらの質問を調査します。
どちらの設定でも、ノイズを考慮しなければアナリストが誤った結論を出す可能性があることを観察する。
選択基準を微調整することで、再分権者がバランスのとれた計画を引き出すことができ、図示的な計画は、地理的に可能な多数派マイノリティ地区の最大数の証拠として使用することができる。
少なくとも州議会では、差分プライバシーが「公正な線を引く権利を阻害する」というアラバマ州の主張が根拠になっていない。
関連論文リスト
- The 2020 United States Decennial Census Is More Private Than You (Might) Think [25.32778927275117]
我々は、2020年国勢調査のプライバシー予算の8.50%から13.76%が8つの地理的レベルごとに使われていないことを示した。
我々は、地理的レベルで同じプライバシー予算を維持しながら、ノイズ分散を15.08%から24.82%削減する。
論文 参考訳(メタデータ) (2024-10-11T23:06:15Z) - Efficient Weighting Schemes for Auditing Instant-Runoff Voting Elections [57.67176250198289]
AWAIREは、適応的に重み付けされたテスト統計量であり、本質的には、テストに有効な仮説のセットを「学習」する。
我々は、より広範囲にスキームと設定を検討し、実践のための効率的な選択を特定し、推奨する。
現在のAWAIRE実装の制限は、少数の候補者に限られている。
論文 参考訳(メタデータ) (2024-02-18T10:13:01Z) - The Impact of Differential Feature Under-reporting on Algorithmic Fairness [86.275300739926]
解析的に抽出可能な差分特徴のアンダーレポーティングモデルを提案する。
そして、この種のデータバイアスがアルゴリズムの公正性に与える影響を特徴づける。
我々の結果は、実世界のデータ設定では、アンダーレポートが典型的に格差を増大させることを示している。
論文 参考訳(メタデータ) (2024-01-16T19:16:22Z) - Comment: The Essential Role of Policy Evaluation for the 2020 Census
Disclosure Avoidance System [0.0]
Boyd and Sarathy, "Differential Perspectives: Epistemic Disconnects around around the US Census Bureau's Use of Differential Privacy"
Census Disclosure Avoidance Systemの実証的な評価は、ベンチマークデータが人口数の基本的真実ではないことを認識できなかった、と我々は主張する。
データユーティリティとプライバシ保護の間には、政策立案者が重要なトレードオフに直面しなければならない、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-15T21:41:54Z) - Mathematically Quantifying Non-responsiveness of the 2021 Georgia
Congressional Districting Plan [3.097163558730473]
並列テンパリング法とReComを併用したメトロポリケートサンプリング手法を応用した。
ジョージア州における地区計画の最初の事例研究を通じて、これらの改善を開拓する。
我々の分析では、ジョージア州の選挙は、この制定された計画の下で、確実に9人の共和党員と5人の民主党員を選出すると予想している。
論文 参考訳(メタデータ) (2022-03-13T02:58:32Z) - Census TopDown: The Impacts of Differential Privacy on Redistricting [0.3746889836344765]
我々は、Censusデータの再分割におけるいくつかの重要な応用について考察する。
われわれはTopDownが許容可能な人口収支を持つ地区を生産する能力を脅かさないという確実な証拠を見つける。
論文 参考訳(メタデータ) (2022-03-09T23:28:53Z) - Identification of Subgroups With Similar Benefits in Off-Policy Policy
Evaluation [60.71312668265873]
我々は,パーソナライズの必要性と自信ある予測とのバランスをとる方法を開発した。
本手法は不均一な治療効果の正確な予測に有効であることを示す。
論文 参考訳(メタデータ) (2021-11-28T23:19:12Z) - The Impact of the U.S. Census Disclosure Avoidance System on
Redistricting and Voting Rights Analysis [0.0]
米国国勢調査局は、2020年国勢調査の回答者のプライバシーを、情報開示回避システム(DAS)を通じて保護する計画だ。
保護されたデータは、目的を再限定するのに十分な品質ではないことが分かりました。
分析の結果,DASが保護するデータは,投票者の投票率や党派・人種構成に応じて,特定の領域に偏っていることがわかった。
論文 参考訳(メタデータ) (2021-05-29T03:32:36Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
本稿では,差分プライバシー制約下での校正問題の性質を抽象化する枠組みを提案する。
また、新しいリカレーションアルゴリズム、精度温度スケーリングを設計し、プライベートデータセットの事前処理より優れています。
論文 参考訳(メタデータ) (2020-08-21T18:43:37Z) - Provably Good Batch Reinforcement Learning Without Great Exploration [51.51462608429621]
バッチ強化学習(RL)は、RLアルゴリズムを多くの高利得タスクに適用するために重要である。
最近のアルゴリズムは将来性を示しているが、期待された結果に対して過度に楽観的である。
より保守的な更新を行うため、ベルマンの最適性と評価のバックアップに小さな修正を加えることで、はるかに強力な保証が得られることを示す。
論文 参考訳(メタデータ) (2020-07-16T09:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。