DetailCLIP: Detail-Oriented CLIP for Fine-Grained Tasks
- URL: http://arxiv.org/abs/2409.06809v1
- Date: Tue, 10 Sep 2024 18:27:36 GMT
- Title: DetailCLIP: Detail-Oriented CLIP for Fine-Grained Tasks
- Authors: Amin Karimi Monsefi, Kishore Prakash Sailaja, Ali Alilooee, Ser-Nam Lim, Rajiv Ramnath,
- Abstract summary: We introduce DetailCLIP: A Detail-Oriented CLIP to address the limitations of contrastive learning-based vision-language models.
We show that DetailCLIP surpasses existing CLIP-based and traditional self-supervised learning (SSL) models in segmentation accuracy and exhibits superior generalization across diverse datasets.
- Score: 31.850184662606562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce DetailCLIP: A Detail-Oriented CLIP to address the limitations of contrastive learning-based vision-language models, particularly CLIP, in handling detail-oriented and fine-grained tasks like segmentation. While CLIP and its variants excel in the global alignment of image and text representations, they often struggle to capture the fine-grained details necessary for precise segmentation. To overcome these challenges, we propose a novel framework that employs patch-level comparison of self-distillation and pixel-level reconstruction losses, enhanced with an attention-based token removal mechanism. This approach selectively retains semantically relevant tokens, enabling the model to focus on the image's critical regions aligned with the specific functions of our model, including textual information processing, patch comparison, and image reconstruction, ensuring that the model learns high-level semantics and detailed visual features. Our experiments demonstrate that DetailCLIP surpasses existing CLIP-based and traditional self-supervised learning (SSL) models in segmentation accuracy and exhibits superior generalization across diverse datasets. DetailCLIP represents a significant advancement in vision-language modeling, offering a robust solution for tasks that demand high-level semantic understanding and detailed feature extraction. https://github.com/KishoreP1/DetailCLIP.
Related papers
- ClearCLIP: Decomposing CLIP Representations for Dense Vision-Language Inference [32.852004564832455]
We re-investigate the architecture of CLIP, and identify residual connections as the primary source of noise that degrades segmentation quality.
We propose ClearCLIP, a novel approach that decomposes CLIP's representations to enhance open-vocabulary semantic segmentation.
arXiv Detail & Related papers (2024-07-17T09:52:20Z) - Open-Vocabulary Semantic Segmentation with Image Embedding Balancing [33.69721994194684]
We propose a novel framework for openvocabulary semantic segmentation called EBSeg.
AdaB Decoder is designed to generate different image embeddings for both training and new classes.
SSC Loss aligns the inter-classes affinity in the image feature space with that in the text feature space of CLIP.
arXiv Detail & Related papers (2024-06-14T08:34:20Z) - UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding [90.74967596080982]
This paper extends Contrastive Language-Image Pre-training (CLIP) with multi-granularity alignment.
We develop a Unified Multi-Granularity learning framework, termed UMG-CLIP, which simultaneously empowers the model with versatile perception abilities.
With parameter efficient tuning, UMG-CLIP surpasses current widely used CLIP variants and achieves state-of-the-art performance on diverse image understanding benchmarks.
arXiv Detail & Related papers (2024-01-12T06:35:09Z) - CLIP meets Model Zoo Experts: Pseudo-Supervision for Visual Enhancement [65.47237619200442]
Contrastive language image pretraining (CLIP) is a standard method for training vision-language models.
We augment CLIP training with task-specific vision models from model zoos to improve its visual representations.
This simple setup shows substantial improvements of up to 16.3% across different vision tasks.
arXiv Detail & Related papers (2023-10-21T20:20:13Z) - Learning Customized Visual Models with Retrieval-Augmented Knowledge [104.05456849611895]
We propose REACT, a framework to acquire the relevant web knowledge to build customized visual models for target domains.
We retrieve the most relevant image-text pairs from the web-scale database as external knowledge, and propose to customize the model by only training new modualized blocks while freezing all the original weights.
The effectiveness of REACT is demonstrated via extensive experiments on classification, retrieval, detection and segmentation tasks, including zero, few, and full-shot settings.
arXiv Detail & Related papers (2023-01-17T18:59:06Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Injecting Image Details into CLIP's Feature Space [29.450159407113155]
We introduce an efficient framework that can produce a single feature representation for a high-resolution image.
In the framework, we train a feature fusing model based on CLIP features extracted from a carefully designed image patch method.
We validate our framework by retrieving images from class prompted queries on the real world and synthetic datasets.
arXiv Detail & Related papers (2022-08-31T06:18:10Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.