論文の概要: Legal Fact Prediction: Task Definition and Dataset Construction
- arxiv url: http://arxiv.org/abs/2409.07055v1
- Date: Wed, 11 Sep 2024 07:01:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 15:26:28.957193
- Title: Legal Fact Prediction: Task Definition and Dataset Construction
- Title(参考訳): 法的契約予測:タスク定義とデータセット構築
- Authors: Junkai Liu, Yujie Tong, Hui Huang, Shuyuan Zheng, Muyun Yang, Peicheng Wu, Makoto Onizuka, Chuan Xiao,
- Abstract要約: 本稿では,新たなNLP課題である法的事実予測について紹介する。
証拠リストに基づいて法的事実を予測することを目的としている。
予測された事実は、その提出を強化するために裁判に関与した当事者とその弁護士に指示することができる。
- 参考スコア(独自算出の注目度): 14.872835928447678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legal facts refer to the facts that can be proven by acknowledged evidence in a trial. They form the basis for the determination of court judgments. This paper introduces a novel NLP task: legal fact prediction, which aims to predict the legal fact based on a list of evidence. The predicted facts can instruct the parties and their lawyers involved in a trial to strengthen their submissions and optimize their strategies during the trial. Moreover, since real legal facts are difficult to obtain before the final judgment, the predicted facts also serve as an important basis for legal judgment prediction. We construct a benchmark dataset consisting of evidence lists and ground-truth legal facts for real civil loan cases, LFPLoan. Our experiments on this dataset show that this task is non-trivial and requires further considerable research efforts.
- Abstract(参考訳): 法的事実は、裁判で認められた証拠によって証明できる事実を指す。
裁判所判決の決定の基礎となる。
本稿では,新たなNLP課題として,証拠リストに基づく法的事実の予測を目的とした法的事実予測について紹介する。
予測された事実は、裁判に関わった当事者とその弁護士に、提出の強化と裁判中の戦略の最適化を指示することができる。
さらに、最終判断の前には、実際の法的事実を入手することが困難であるため、予測された事実は、法的判断の予測の重要な基盤としても機能する。
LFPLoan, LFPLoanのエビデンスリストと真正な法的事実からなるベンチマークデータセットを構築した。
このデータセットを用いた実験により,この課題は非自明であり,さらなる研究努力が必要であることが示された。
関連論文リスト
- DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の判断と神経モデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
論文 参考訳(メタデータ) (2024-03-25T15:15:41Z) - Low-Resource Court Judgment Summarization for Common Law Systems [32.13166048504629]
CLSumは,多審理法裁判所判決文書を要約する最初のデータセットである。
これは、データ拡張、要約生成、評価において、大規模言語モデル(LLM)を採用する最初の裁判所判決要約作業である。
論文 参考訳(メタデータ) (2024-03-07T12:47:42Z) - PILOT: Legal Case Outcome Prediction with Case Law [43.680862577060765]
判例法を用いて判例結果の予測を行う際の2つのユニークな課題を同定する。
第一に、意思決定において裁判官の基本的な証拠となる関連する前例を特定することが重要である。
第二に、初期の事例は異なる法的文脈に従う可能性があるため、時間とともに法原則の進化を考慮する必要がある。
論文 参考訳(メタデータ) (2024-01-28T21:18:05Z) - LegalDuet: Learning Effective Representations for Legal Judgment
Prediction through a Dual-View Legal Clue Reasoning [40.412070416260136]
本稿では,法的な判断を行うための適切な埋め込み空間を学習するために,言語モデルを事前訓練するLegalDuetモデルを提案する。
実験の結果,LegalDuetはCAIL2018データセット上で最先端のパフォーマンスを実現していることがわかった。
論文 参考訳(メタデータ) (2024-01-27T10:28:27Z) - Fact-based Court Judgment Prediction [0.5439020425819]
この拡張された抽象的焦点は、インドの法律文書の文脈における事実に基づく判断予測である。
1つは事実のみに基づくものであり、もう1つは下級裁判所(RLC)の判決と組み合わせた事実である。
本研究は, 早期症例予測の強化をめざし, 法律専門家や一般市民に多大な利益をもたらすことを目的としている。
論文 参考訳(メタデータ) (2023-11-22T12:39:28Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
我々は、信頼できる電荷予測モデルが法的理論を考慮に入れるべきであると主張している。
本稿では,この課題に従わなければならない信頼に値するモデルの3つの原則を提案する。
以上の結果から,既存の電荷予測モデルはベンチマークデータセットの選択的原理に合致するが,そのほとんどが十分な感度が得られず,無害の予測を満たさないことが示唆された。
論文 参考訳(メタデータ) (2022-10-31T07:32:12Z) - Missing Counter-Evidence Renders NLP Fact-Checking Unrealistic for
Misinformation [67.69725605939315]
誤報は、信頼できる情報が限られている不確実な時に現れる。
NLPベースのファクトチェックは、まだ利用できないかもしれない反証拠に依存しているため、これは難しい。
論文 参考訳(メタデータ) (2022-10-25T09:40:48Z) - Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting [25.53133777558123]
本稿では, 実地裁判所から新たなデータセットを導入し, 法的な判断を合理的に百科事典的に予測する。
大規模な民事裁判データセットを用いた広範な実験は、提案モデルが、法的判断予測のためのクレーム、事実、議論の間の相互作用をより正確に特徴付けることができることを示している。
論文 参考訳(メタデータ) (2021-07-12T04:27:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。