論文の概要: Legal Fact Prediction: The Missing Piece in Legal Judgment Prediction
- arxiv url: http://arxiv.org/abs/2409.07055v2
- Date: Thu, 06 Mar 2025 05:48:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:57:03.646176
- Title: Legal Fact Prediction: The Missing Piece in Legal Judgment Prediction
- Title(参考訳): 法的事実予測 : 法的判断の欠如
- Authors: Junkai Liu, Yujie Tong, Hui Huang, Bowen Zheng, Yiran Hu, Peicheng Wu, Chuan Xiao, Makoto Onizuka, Muyun Yang, Shuyuan Zheng,
- Abstract要約: 法的判断予測(LJP)は、訴訟者とその弁護士が判断結果を予測し、訴訟戦略を洗練させることを可能にする。
我々は,裁判で提出された証拠を法的事実を予測するための入力として用い,新たな法的NLPタスクであるthistlegal fact prediction (LFP)を提案する。
- 参考スコア(独自算出の注目度): 14.590474303978864
- License:
- Abstract: Legal judgment prediction (LJP), which enables litigants and their lawyers to forecast judgment outcomes and refine litigation strategies, has emerged as a crucial legal NLP task. Existing studies typically utilize legal facts, i.e., facts that have been established by evidence and determined by the judge, to predict the judgment. However, legal facts are often difficult to obtain in the early stages of litigation, significantly limiting the practical applicability of fact-based LJP. To address this limitation, we propose a novel legal NLP task: \textit{legal fact prediction} (LFP), which takes the evidence submitted by litigants for trial as input to predict legal facts, thereby empowering fact-based LJP technologies to perform prediction in the absence of ground-truth legal facts. We also propose the first benchmark dataset, LFPBench, for evaluating the LFP task. Our extensive experiments on LFPBench demonstrate the effectiveness of LFP-empowered LJP and highlight promising research directions for LFP. Our code and data are available at https://github.com/HPRCEST/LFPBench.
- Abstract(参考訳): 訴訟員とその弁護士が判断結果を予測し、訴訟戦略を洗練させる法的判断予測(LJP)が重要な法的NLP課題として浮上している。
既存の研究は、典型的には法的事実、すなわち、証拠によって確立され、裁判官によって決定された事実を利用して、判断を予測する。
しかし、訴訟の初期段階において法的事実を得るのは難しいことが多く、事実に基づくLJPの実践的適用性を著しく制限している。
この制限に対処するために、新たな法的NLPタスクを提案する: \textit{legal fact prediction} (LFP)。
また、LFPタスクを評価するための最初のベンチマークデータセットLFPBenchを提案する。
LFPBenchに関する広範な実験は、LFPを動力とするLJPの有効性を実証し、LFPの有望な研究方向性を明らかにする。
私たちのコードとデータはhttps://github.com/HPRCEST/LFPBench.comで公開されています。
関連論文リスト
- Beyond Guilt: Legal Judgment Prediction with Trichotomous Reasoning [12.589047235741194]
Innocent Verdicts を用いた法的な判断予測のための最初のベンチマークデータセット LJPIV を紹介する。
LLMに基づく拡張と手作業による検証により,3つの広く使用されている法的データセットを拡張した。
現状の法的LLMと, トリコトミー推論をゼロショット・プロンプトと微調整に組み込んだ新たな戦略による実験により, 1) 現行の法的LLMには改善の余地があり, 最高のモデルでさえも, LJPIVのF1スコアが0.3未満であることがわかった。
論文 参考訳(メタデータ) (2024-12-19T07:14:13Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の判断と神経モデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
論文 参考訳(メタデータ) (2024-03-25T15:15:41Z) - Low-Resource Court Judgment Summarization for Common Law Systems [32.13166048504629]
CLSumは,多審理法裁判所判決文書を要約する最初のデータセットである。
これは、データ拡張、要約生成、評価において、大規模言語モデル(LLM)を採用する最初の裁判所判決要約作業である。
論文 参考訳(メタデータ) (2024-03-07T12:47:42Z) - LegalDuet: Learning Effective Representations for Legal Judgment Prediction through a Dual-View Legal Clue Reasoning [38.94741836781938]
本稿では,法的な判断を行うための適切な埋め込み空間を学習するために,言語モデルを事前訓練するLegalDuetモデルを提案する。
実験の結果,LegalDuetはCAIL2018データセット上で最先端のパフォーマンスを実現していることがわかった。
論文 参考訳(メタデータ) (2024-01-27T10:28:27Z) - Fact-based Court Judgment Prediction [0.5439020425819]
この拡張された抽象的焦点は、インドの法律文書の文脈における事実に基づく判断予測である。
1つは事実のみに基づくものであり、もう1つは下級裁判所(RLC)の判決と組み合わせた事実である。
本研究は, 早期症例予測の強化をめざし, 法律専門家や一般市民に多大な利益をもたらすことを目的としている。
論文 参考訳(メタデータ) (2023-11-22T12:39:28Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z) - Do Charge Prediction Models Learn Legal Theory? [59.74220430434435]
我々は、信頼できる電荷予測モデルが法的理論を考慮に入れるべきであると主張している。
本稿では,この課題に従わなければならない信頼に値するモデルの3つの原則を提案する。
以上の結果から,既存の電荷予測モデルはベンチマークデータセットの選択的原理に合致するが,そのほとんどが十分な感度が得られず,無害の予測を満たさないことが示唆された。
論文 参考訳(メタデータ) (2022-10-31T07:32:12Z) - Missing Counter-Evidence Renders NLP Fact-Checking Unrealistic for
Misinformation [67.69725605939315]
誤報は、信頼できる情報が限られている不確実な時に現れる。
NLPベースのファクトチェックは、まだ利用できないかもしれない反証拠に依存しているため、これは難しい。
論文 参考訳(メタデータ) (2022-10-25T09:40:48Z) - Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting [25.53133777558123]
本稿では, 実地裁判所から新たなデータセットを導入し, 法的な判断を合理的に百科事典的に予測する。
大規模な民事裁判データセットを用いた広範な実験は、提案モデルが、法的判断予測のためのクレーム、事実、議論の間の相互作用をより正確に特徴付けることができることを示している。
論文 参考訳(メタデータ) (2021-07-12T04:27:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。