論文の概要: TrialSynth: Generation of Synthetic Sequential Clinical Trial Data
- arxiv url: http://arxiv.org/abs/2409.07089v1
- Date: Wed, 11 Sep 2024 08:20:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 15:14:01.441697
- Title: TrialSynth: Generation of Synthetic Sequential Clinical Trial Data
- Title(参考訳): TrialSynth:Synthetic Sequential Clinical Trial Dataの作成
- Authors: Chufan Gao, Mandis Beigi, Afrah Shafquat, Jacob Aptekar, Jimeng Sun,
- Abstract要約: 変動オートエンコーダ(VAE)は、合成時系列臨床試験データを生成する際の課題に対処するために設計された。
実験の結果,Trial Synthは他の同等の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 21.799655542003677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analyzing data from past clinical trials is part of the ongoing effort to optimize the design, implementation, and execution of new clinical trials and more efficiently bring life-saving interventions to market. While there have been recent advances in the generation of static context synthetic clinical trial data, due to both limited patient availability and constraints imposed by patient privacy needs, the generation of fine-grained synthetic time-sequential clinical trial data has been challenging. Given that patient trajectories over an entire clinical trial are of high importance for optimizing trial design and efforts to prevent harmful adverse events, there is a significant need for the generation of high-fidelity time-sequence clinical trial data. Here we introduce TrialSynth, a Variational Autoencoder (VAE) designed to address the specific challenges of generating synthetic time-sequence clinical trial data. Distinct from related clinical data VAE methods, the core of our method leverages Hawkes Processes (HP), which are particularly well-suited for modeling event-type and time gap prediction needed to capture the structure of sequential clinical trial data. Our experiments demonstrate that TrialSynth surpasses the performance of other comparable methods that can generate sequential clinical trial data, in terms of both fidelity and in enabling the generation of highly accurate event sequences across multiple real-world sequential event datasets with small patient source populations when using minimal external information. Notably, our empirical findings highlight that TrialSynth not only outperforms existing clinical sequence-generating methods but also produces data with superior utility while empirically preserving patient privacy.
- Abstract(参考訳): 過去の臨床試験のデータ分析は、新しい臨床試験の設計、実施、実行を最適化し、より効率的に省力化の介入を市場にもたらすために、現在進行中の取り組みの一部である。
近年,静的な文脈による臨床試験データの生成が進んでいるが,患者のプライバシ要求による制約や,患者のプライバシ要求による制約が限定されているため,詳細な総合的な臨床試験データの生成は困難である。
臨床治験全体に対する患者軌跡が、有害な有害事象を防止するための治験設計と努力の最適化に極めて重要であることを考えると、高忠実度時系列臨床治験データの生成には大きなニーズがある。
本稿では,TrialSynthについて紹介する。TrialSynthは,合成時系列臨床試験データの生成に関する具体的な課題に対処するために設計された変分オートエンコーダ(VAE)である。
本手法のコアとなるのがHawkes Processes (HP) であり, 連続的な臨床試験データの構造を捉えるのに必要なイベントタイプおよび時間ギャップ予測のモデル化に特に適している。
以上の結果から,TrialSynth は,複数の実世界連続イベントデータセットに対して,最小限の外部情報を使用する場合に,精度の高いイベントシーケンスを生成できることを実証した。
特に,TrialSynthが既存の臨床シーケンス生成法より優れているだけでなく,患者のプライバシを経験的に保存しながら,優れたユーティリティでデータを生成するという経験的知見が浮かび上がっている。
関連論文リスト
- SynRL: Aligning Synthetic Clinical Trial Data with Human-preferred Clinical Endpoints Using Reinforcement Learning [23.643984146939573]
患者データ生成装置の性能向上のために強化学習を活用するSynRLを提案する。
提案手法は,生成したデータの品質を評価するためのデータ値批判機能と,データジェネレータとユーザニーズを整合させる強化学習を利用する。
論文 参考訳(メタデータ) (2024-11-11T19:19:46Z) - Retrieval-Reasoning Large Language Model-based Synthetic Clinical Trial Generation [16.067841125848688]
本稿では, 大規模言語モデルを利用した新規な検索・推論フレームワークを提案する。
urlClinicalTrials.govデータベースによる実際の臨床試験で実施された実験は、我々の合成データが実際のデータセットを効果的に増大させることができることを示した。
本研究は, 臨床研究を加速し, 患者プライバシの倫理基準を高くする上で, 総合臨床試験生成のためのLCMが期待できることを示唆する。
論文 参考訳(メタデータ) (2024-10-16T11:46:32Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
マルチモーダルデータを用いて臨床試験期間を推定する機械学習に基づくTrialDuraを提案する。
バイオメディカルコンテキストに特化されたBio-BERT埋め込みにエンコードして,より深く,より関連するセマンティック理解を提供する。
提案モデルでは, 平均絶対誤差(MAE)が1.04年, 根平均二乗誤差(RMSE)が1.39年であった。
論文 参考訳(メタデータ) (2024-04-20T02:12:59Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
NeurIPS 2020 Hide-and-Seek Privacy Challengeは、両方の問題を解決するための新しい2トラックの競争だ。
我々の頭から頭までのフォーマットでは、新しい高品質な集中ケア時系列データセットを用いて、合成データ生成トラック(「ヒッシャー」)と患者再識別トラック(「シーカー」)の参加者が直接対決する。
論文 参考訳(メタデータ) (2020-07-23T15:50:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。