論文の概要: Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2409.07115v1
- Date: Wed, 11 Sep 2024 09:08:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 15:14:01.416461
- Title: Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment
- Title(参考訳): ブラインド画像品質評価のための注意ダウンサンプリング変換器、相対ランク付けおよび自己整合性
- Authors: Mohammed Alsaafin, Musab Alsheikh, Saeed Anwar, Muhammad Usman,
- Abstract要約: 非参照画像品質評価は、元の参照なしで画像品質を推定する難しい領域である。
変換器エンコーダとCNNを用いて,画像から局所的および非局所的情報を抽出する機構を改良した。
非参照画像品質評価(NR-IQA)モデルの劣化に対処し,自己超越に対する自己整合性アプローチを提案する。
- 参考スコア(独自算出の注目度): 17.04649536069553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The no-reference image quality assessment is a challenging domain that addresses estimating image quality without the original reference. We introduce an improved mechanism to extract local and non-local information from images via different transformer encoders and CNNs. The utilization of Transformer encoders aims to mitigate locality bias and generate a non-local representation by sequentially processing CNN features, which inherently capture local visual structures. Establishing a stronger connection between subjective and objective assessments is achieved through sorting within batches of images based on relative distance information. A self-consistency approach to self-supervision is presented, explicitly addressing the degradation of no-reference image quality assessment (NR-IQA) models under equivariant transformations. Our approach ensures model robustness by maintaining consistency between an image and its horizontally flipped equivalent. Through empirical evaluation of five popular image quality assessment datasets, the proposed model outperforms alternative algorithms in the context of no-reference image quality assessment datasets, especially on smaller datasets. Codes are available at \href{https://github.com/mas94/ADTRS}{https://github.com/mas94/ADTRS}
- Abstract(参考訳): 非参照画像品質評価は、元の参照なしで画像品質を推定する難しい領域である。
変換器エンコーダとCNNを用いて,画像から局所的および非局所的情報を抽出する機構を改良した。
Transformerエンコーダの利用は、局所性バイアスを緩和し、局所的な視覚構造を本質的にキャプチャするCNN機能を逐次処理することで非局所表現を生成することを目的としている。
相対的距離情報に基づいて画像のバッチ内をソートすることで、主観的評価と客観的評価のより強い関係を確立する。
非参照画像品質評価(NR-IQA)モデルの同変変換による劣化に対処し,自己超越に対する自己整合性アプローチを提案する。
提案手法は,画像と水平方向に反転した等価値との整合性を維持することにより,モデルロバスト性を確保する。
5つの画像品質評価データセットの実証評価を通じて、提案モデルは、特に小さなデータセットにおいて、非参照画像品質評価データセットの文脈において、代替アルゴリズムよりも優れている。
コードは \href{https://github.com/mas94/ADTRS}{https://github.com/mas94/ADTRS} で入手できる。
関連論文リスト
- Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) は、高品質な参照画像を必要としない、人間の知覚に合わせて画像品質を測定する手法を開発することを目的としている。
本研究では、画像歪み多様体をモデル化し、本質的な表現を得るための自己教師型アプローチ ARNIQA を提案する。
論文 参考訳(メタデータ) (2023-10-20T17:22:25Z) - Regression-free Blind Image Quality Assessment with Content-Distortion
Consistency [42.683300312253884]
画像品質評価のための回帰フリーフレームワークを提案する。
これは、セマンティックな特徴空間と歪みのある特徴空間を組み込むことで、局所的に類似したインスタンスを検索することに基づいている。
提案手法は, 最先端の回帰に基づく手法と比較して, 競争力や性能に優れる。
論文 参考訳(メタデータ) (2023-07-18T14:19:28Z) - Image Deblurring by Exploring In-depth Properties of Transformer [86.7039249037193]
我々は、事前訓練された視覚変換器(ViT)から抽出した深い特徴を活用し、定量的な測定値によって測定された性能を犠牲にすることなく、回復した画像のシャープ化を促進する。
得られた画像と対象画像の変換器特徴を比較することにより、事前学習された変換器は、高解像度のぼやけた意味情報を提供する。
特徴をベクトルとみなし、抽出された画像から抽出された表現とユークリッド空間における対象表現との差を計算する。
論文 参考訳(メタデータ) (2023-03-24T14:14:25Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - No-Reference Image Quality Assessment via Transformers, Relative
Ranking, and Self-Consistency [38.88541492121366]
No-Reference Image Quality Assessment (NR-IQA) の目的は、主観的評価に応じて知覚的画質を推定することである。
本稿では、変圧器における畳み込みニューラルネットワーク(CNN)と自己保持機構の利点を生かしたハイブリッドアプローチを利用して、NR-IQAタスクに対処する新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-08-16T02:07:08Z) - Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images [7.628527132779575]
GANの注目すべき応用の1つは、ディープフェイク(deep fakes)として知られる偽の人間の顔を開発することである。
生成された画像の品質を測定することは本質的に主観的だが、標準化されたメトリクスを使って品質を客観化しようとする試みがなされている。
我々は,より広い視覚的欠陥をカバーするために,低レベルの特徴を統合することにより,評価プロセスの堅牢性を向上させることを提案する。
論文 参考訳(メタデータ) (2021-06-16T06:53:27Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。